BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 28885960)

  • 1. International Classification of Disease Coding of Exertional Heat Illness in U.S. Army Soldiers.
    DeGroot DW; Mok G; Hathaway NE
    Mil Med; 2017 Sep; 182(9):e1946-e1950. PubMed ID: 28885960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exertional heat illness at Fort Benning, GA: Unique insights from the Army Heat Center.
    DeGroot D; Henderson K; O'Connor F
    MSMR; 2022 Apr; 29(4):2-7. PubMed ID: 35608507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk of Exertional Heat Illnesses Associated with Sickle Cell Trait in U.S. Military.
    Singer DE; Byrne C; Chen L; Shao S; Goldsmith J; Niebuhr DW
    Mil Med; 2018 Jul; 183(7-8):e310-e317. PubMed ID: 29415213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal Trends for Environmental Illness Incidence in the U.S. Army.
    DeGroot DW; Rappole CA; McHenry P; Englert RM
    Mil Med; 2022 May; 187(5-6):e672-e677. PubMed ID: 33605408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental conditions and the occurrence of exertional heat illnesses and exertional heat stroke at the Falmouth Road Race.
    DeMartini JK; Casa DJ; Belval LN; Crago A; Davis RJ; Jardine JJ; Stearns RL
    J Athl Train; 2014; 49(4):478-85. PubMed ID: 24972041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of continuous hot weather training on risk of exertional heat illness.
    Wallace RF; Kriebel D; Punnett L; Wegman DH; Wenger CB; Gardner JW; Gonzalez RR
    Med Sci Sports Exerc; 2005 Jan; 37(1):84-90. PubMed ID: 15632673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The validity of the heat tolerance test in prediction of recurrent exertional heat illness events.
    Schermann H; Heled Y; Fleischmann C; Ketko I; Schiffmann N; Epstein Y; Yanovich R
    J Sci Med Sport; 2018 Jun; 21(6):549-552. PubMed ID: 29066054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat illness during initial military training.
    Everest A; Taylor N
    BMJ Mil Health; 2020 Oct; 166(5):366-372. PubMed ID: 32409615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predisposing risk factors on susceptibility to exertional heat illness: clinical decision-making considerations.
    Cleary M
    J Sport Rehabil; 2007 Aug; 16(3):204-14. PubMed ID: 17923726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exertional Heat Illness in American Football Players: When Is the Risk Greatest?
    Cooper ER; Ferrara MS; Casa DJ; Powell JW; Broglio SP; Resch JE; Courson RW
    J Athl Train; 2016 Aug; 51(8):593-600. PubMed ID: 27505271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidemiology of Exertional Heat Illness in the Military: A Systematic Review of Observational Studies.
    Alele FO; Malau-Aduli BS; Malau-Aduli AEO; J Crowe M
    Int J Environ Res Public Health; 2020 Sep; 17(19):. PubMed ID: 32993024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exertional heat illness and acute injury related to ambient wet bulb globe temperature.
    Garzon-Villalba XP; Mbah A; Wu Y; Hiles M; Moore H; Schwartz SW; Bernard TE
    Am J Ind Med; 2016 Dec; 59(12):1169-1176. PubMed ID: 27779310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat exhaustion and heat stroke among active component members of the U.S. Armed Forces, 2019-2023.
    Maule AL; Scatliffe-Carrion KD; Kotas KS; Smith JD; Ambrose JF
    MSMR; 2024 Apr; 31(4):3-8. PubMed ID: 38722363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidemiology of hospitalizations and deaths from heat illness in soldiers.
    Carter R; Cheuvront SN; Williams JO; Kolka MA; Stephenson LA; Sawka MN; Amoroso PJ
    Med Sci Sports Exerc; 2005 Aug; 37(8):1338-44. PubMed ID: 16118581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incidence, timing, and seasonal patterns of heat illnesses during U.S. Army basic combat training, 2014-2018.
    Barnes SR; Ambrose JF; Maule AL; Kebisek J; McCabe AA; Scatliffe K; Forrest LJ; Steelman R; Superior M
    MSMR; 2019 Apr; 26(4):7-14. PubMed ID: 31026172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fitness, obesity and risk of heat illness among army trainees.
    Bedno SA; Urban N; Boivin MR; Cowan DN
    Occup Med (Lond); 2014 Sep; 64(6):461-7. PubMed ID: 25022280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Women and exertional heat illness: identification of gender specific risk factors.
    Kazman JB; Purvis DL; Heled Y; Lisman P; Atias D; Van Arsdale S; Deuster PA
    US Army Med Dep J; 2015; ():58-66. PubMed ID: 26101907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Update: Heat illness, active component, U.S. Armed Forces, 2018.
    MSMR; 2019 Apr; 26(4):15-20. PubMed ID: 31026173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Arm Immersion Cooling During Ranger Training on Exertional Heat Illness and Treatment Costs.
    DeGroot DW; Kenefick RW; Sawka MN
    Mil Med; 2015 Nov; 180(11):1178-83. PubMed ID: 26540710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat exhaustion in a deep underground metalliferous mine.
    Donoghue AM; Sinclair MJ; Bates GP
    Occup Environ Med; 2000 Mar; 57(3):165-74. PubMed ID: 10810098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.