BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 28886037)

  • 1. Growing season carries stronger contributions to albedo dynamics on the Tibetan plateau.
    Tian L; Chen J; Zhang Y
    PLoS One; 2017; 12(9):e0180559. PubMed ID: 28886037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal variations of land surface albedo and associated influencing factors on the Tibetan Plateau.
    Pang G; Chen D; Wang X; Lai HW
    Sci Total Environ; 2022 Jan; 804():150100. PubMed ID: 34517323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China.
    Wang S; Wang X; Chen G; Yang Q; Wang B; Ma Y; Shen M
    Sci Total Environ; 2017 Sep; 593-594():449-461. PubMed ID: 28351812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Spatiotemporal dynamics of land cover in northern Tibetan Plateau with responses to climate change].
    Song CQ; You SC; Ke LH; Liu GH; Zhong XK
    Ying Yong Sheng Tai Xue Bao; 2011 Aug; 22(8):2091-7. PubMed ID: 22097372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.
    de Wit HA; Bryn A; Hofgaard A; Karstensen J; Kvalevåg MM; Peters GP
    Glob Chang Biol; 2014 Jul; 20(7):2344-55. PubMed ID: 24343906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations.
    Loranty MM; Berner LT; Goetz SJ; Jin Y; Randerson JT
    Glob Chang Biol; 2014 Feb; 20(2):594-606. PubMed ID: 24039000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-absorbing impurities accelerating glacial melting in southeastern Tibetan Plateau.
    Niu H; Kang S; Wang H; Du J; Pu T; Zhang G; Lu X; Yan X; Wang S; Shi X
    Environ Pollut; 2020 Feb; 257():113541. PubMed ID: 31761593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snow cover persistence reverses the altitudinal patterns of warming above and below 5000 m on the Tibetan Plateau.
    Zhang H; Immerzeel WW; Zhang F; de Kok RJ; Chen D; Yan W
    Sci Total Environ; 2022 Jan; 803():149889. PubMed ID: 34482131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatio-temporal characteristics of global warming in the Tibetan Plateau during the last 50 years based on a generalised temperature zone-elevation model.
    Wei Y; Fang Y
    PLoS One; 2013; 8(4):e60044. PubMed ID: 23565182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic.
    Williamson SN; Barrio IC; Hik DS; Gamon JA
    Glob Chang Biol; 2016 Nov; 22(11):3621-3631. PubMed ID: 27158930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dust dominates the summer melting of glacier ablation zones on the northeastern Tibetan Plateau.
    Li Y; Kang S; Zhang X; Li C; Chen J; Qin X; Shao L; Tian L
    Sci Total Environ; 2023 Jan; 856(Pt 2):159214. PubMed ID: 36208735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projections for the changes in growing season length of tree-ring formation on the Tibetan Plateau based on CMIP5 model simulations.
    He M; Yang B; Shishov V; Rossi S; Bräuning A; Ljungqvist FC; Grießinger J
    Int J Biometeorol; 2018 Apr; 62(4):631-641. PubMed ID: 29150764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of plant production to growing/non-growing season asymmetric warming in an alpine meadow of the Northern Tibetan Plateau.
    Fu G; Zhang HR; Sun W
    Sci Total Environ; 2019 Feb; 650(Pt 2):2666-2673. PubMed ID: 30296774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biogeography of red snow microbiomes and their role in melting arctic glaciers.
    Lutz S; Anesio AM; Raiswell R; Edwards A; Newton RJ; Gill F; Benning LG
    Nat Commun; 2016 Jun; 7():11968. PubMed ID: 27329445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau.
    Zhou Y; Fan J; Wang X
    PLoS One; 2020; 15(6):e0234848. PubMed ID: 32555722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001-2014.
    Chen X; Liang S; Cao Y; He T; Wang D
    Sci Rep; 2015 Nov; 5():16820. PubMed ID: 26581632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mismatch in elevational shifts between satellite observed vegetation greenness and temperature isolines during 2000-2016 on the Tibetan Plateau.
    An S; Zhu X; Shen M; Wang Y; Cao R; Chen X; Yang W; Chen J; Tang Y
    Glob Chang Biol; 2018 Nov; 24(11):5411-5425. PubMed ID: 30156039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau.
    Li X; Kang S; He X; Qu B; Tripathee L; Jing Z; Paudyal R; Li Y; Zhang Y; Yan F; Li G; Li C
    Sci Total Environ; 2017 Jun; 587-588():482-490. PubMed ID: 28258749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forest Gaps Inhibit Foliar Litter Pb and Cd Release in Winter and Inhibit Pb and Cd Accumulation in Growing Season in an Alpine Forest.
    He J; Yang W; Li H; Xu L; Ni X; Tan B; Zhao Y; Wu F
    PLoS One; 2015; 10(6):e0131528. PubMed ID: 26115012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.