These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
645 related articles for article (PubMed ID: 28886075)
41. Annotated Draft Genome Assemblies for the Northern Bobwhite ( Oldeschulte DL; Halley YA; Wilson ML; Bhattarai EK; Brashear W; Hill J; Metz RP; Johnson CD; Rollins D; Peterson MJ; Bickhart DM; Decker JE; Sewell JF; Seabury CM G3 (Bethesda); 2017 Sep; 7(9):3047-3058. PubMed ID: 28717047 [TBL] [Abstract][Full Text] [Related]
42. Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change. Lu WX; Wang ZZ; Hu XY; Rao GY Sci Total Environ; 2024 Feb; 912():169501. PubMed ID: 38145682 [TBL] [Abstract][Full Text] [Related]
43. Using citizen science data to model the distributions of common songbirds of Turkey under different global climatic change scenarios. Abolafya M; Onmuş O; Şekercioğlu Ç; Bilgin R PLoS One; 2013; 8(7):e68037. PubMed ID: 23844151 [TBL] [Abstract][Full Text] [Related]
44. Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly. Fourcade Y; Ranius T; Öckinger E J Anim Ecol; 2017 Oct; 86(6):1339-1351. PubMed ID: 28796909 [TBL] [Abstract][Full Text] [Related]
45. Predicting the distributional range shifts of Rhizocarpon geographicum (L.) DC. in Indian Himalayan Region under future climate scenarios. Kumar D; Pandey A; Rawat S; Joshi M; Bajpai R; Upreti DK; Singh SP Environ Sci Pollut Res Int; 2022 Sep; 29(41):61579-61593. PubMed ID: 34351582 [TBL] [Abstract][Full Text] [Related]
47. Response of the endangered tropical dry forests to climate change and the role of Mexican Protected Areas for their conservation. Prieto-Torres DA; Navarro-Sigüenza AG; Santiago-Alarcon D; Rojas-Soto OR Glob Chang Biol; 2016 Jan; 22(1):364-79. PubMed ID: 26367278 [TBL] [Abstract][Full Text] [Related]
48. Climate change likely to reduce orchid bee abundance even in climatic suitable sites. Faleiro FV; Nemésio A; Loyola R Glob Chang Biol; 2018 Jun; 24(6):2272-2283. PubMed ID: 29498787 [TBL] [Abstract][Full Text] [Related]
49. Using ensemble forecasting to examine how climate change promotes worldwide invasion of the golden apple snail (Pomacea canaliculata). Lei J; Chen L; Li H Environ Monit Assess; 2017 Aug; 189(8):404. PubMed ID: 28726175 [TBL] [Abstract][Full Text] [Related]
50. Incorporating population-level variation in thermal performance into predictions of geographic range shifts. Angert AL; Sheth SN; Paul JR Integr Comp Biol; 2011 Nov; 51(5):733-50. PubMed ID: 21705795 [TBL] [Abstract][Full Text] [Related]
51. Substantial declines in urban tree habitat predicted under climate change. Burley H; Beaumont LJ; Ossola A; Baumgartner JB; Gallagher R; Laffan S; Esperon-Rodriguez M; Manea A; Leishman MR Sci Total Environ; 2019 Oct; 685():451-462. PubMed ID: 31176230 [TBL] [Abstract][Full Text] [Related]
52. Precipitation and winter temperature predict long-term range-scale abundance changes in Western North American birds. Illán JG; Thomas CD; Jones JA; Wong WK; Shirley SM; Betts MG Glob Chang Biol; 2014 Nov; 20(11):3351-64. PubMed ID: 24863299 [TBL] [Abstract][Full Text] [Related]
53. Extreme climatic events constrain space use and survival of a ground-nesting bird. Tanner EP; Elmore RD; Fuhlendorf SD; Davis CA; Dahlgren DK; Orange JP Glob Chang Biol; 2017 May; 23(5):1832-1846. PubMed ID: 27633847 [TBL] [Abstract][Full Text] [Related]
54. Understanding interaction effects of climate change and fire management on bird distributions through combined process and habitat models. White JD; Gutzwiller KJ; Barrow WC; Johnson-Randall L; Zygo L; Swint P Conserv Biol; 2011 Jun; 25(3):536-46. PubMed ID: 21535146 [TBL] [Abstract][Full Text] [Related]
55. Projected impacts of climate change on the range and phenology of three culturally-important shrub species. Prevéy JS; Parker LE; Harrington CA PLoS One; 2020; 15(5):e0232537. PubMed ID: 32384124 [TBL] [Abstract][Full Text] [Related]
56. Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America. McIntyre S; Rangel EF; Ready PD; Carvalho BM Parasit Vectors; 2017 Mar; 10(1):157. PubMed ID: 28340594 [TBL] [Abstract][Full Text] [Related]
57. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change. Casajus N; Périé C; Logan T; Lambert MC; de Blois S; Berteaux D PLoS One; 2016; 11(3):e0152495. PubMed ID: 27015274 [TBL] [Abstract][Full Text] [Related]
58. Do Ecological Niche Models Accurately Identify Climatic Determinants of Species Ranges? Searcy CA; Shaffer HB Am Nat; 2016 Apr; 187(4):423-35. PubMed ID: 27028071 [TBL] [Abstract][Full Text] [Related]
60. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX. Khormi HM; Kumar L Geospat Health; 2014 May; 8(2):405-15. PubMed ID: 24893017 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]