These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
645 related articles for article (PubMed ID: 28886075)
61. Shifts in the ecological niche of Lutzomyia peruensis under climate change scenarios in Peru. Moo-Llanes DA; Arque-Chunga W; Carmona-Castro O; Yañez-Arenas C; Yañez-Trujillano HH; Cheverría-Pacheco L; Baak-Baak CM; Cáceres AG Med Vet Entomol; 2017 Jun; 31(2):123-131. PubMed ID: 28150865 [TBL] [Abstract][Full Text] [Related]
62. Separating direct and indirect effects of global change: a population dynamic modeling approach using readily available field data. Farrer EC; Ashton IW; Knape J; Suding KN Glob Chang Biol; 2014 Apr; 20(4):1238-50. PubMed ID: 24115317 [TBL] [Abstract][Full Text] [Related]
63. Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies. McCauley SJ; Davis CJ; Werner EE; Robeson MS J Anim Ecol; 2014 Jul; 83(4):858-65. PubMed ID: 24237364 [TBL] [Abstract][Full Text] [Related]
65. Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Franklin J; Davis FW; Ikegami M; Syphard AD; Flint LE; Flint AL; Hannah L Glob Chang Biol; 2013 Feb; 19(2):473-83. PubMed ID: 23504785 [TBL] [Abstract][Full Text] [Related]
66. Is the climate right for pleistocene rewilding? Using species distribution models to extrapolate climatic suitability for mammals across continents. Richmond OM; McEntee JP; Hijmans RJ; Brashares JS PLoS One; 2010 Sep; 5(9):e12899. PubMed ID: 20877563 [TBL] [Abstract][Full Text] [Related]
67. Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. Alkishe AA; Peterson AT; Samy AM PLoS One; 2017; 12(12):e0189092. PubMed ID: 29206879 [TBL] [Abstract][Full Text] [Related]
69. Decline in the suitable habitat of dominant Abies species in response to climate change in the Hindu Kush Himalayan region: insights from species distribution modelling. Malik RA; Reshi ZA; Rafiq I; Singh SP Environ Monit Assess; 2022 Jul; 194(9):596. PubMed ID: 35861887 [TBL] [Abstract][Full Text] [Related]
70. Projected climate-induced faunal change in the Western Hemisphere. Lawler JJ; Shafer SL; White D; Kareiva P; Maurer EP; Blaustein AR; Bartlein PJ Ecology; 2009 Mar; 90(3):588-97. PubMed ID: 19341131 [TBL] [Abstract][Full Text] [Related]
71. Factors influencing distributional shifts and abundance at the range core of a climate-sensitive mammal. Billman PD; Beever EA; McWethy DB; Thurman LL; Wilson KC Glob Chang Biol; 2021 Oct; 27(19):4498-4515. PubMed ID: 34236759 [TBL] [Abstract][Full Text] [Related]
72. Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Hu ZM; Zhang QS; Zhang J; Kass JM; Mammola S; Fresia P; Draisma SGA; Assis J; Jueterbock A; Yokota M; Zhang Z Mol Ecol; 2021 Aug; 30(15):3840-3855. PubMed ID: 34022079 [TBL] [Abstract][Full Text] [Related]
73. Inferring the past to predict the future: climate modelling predictions and phylogeography for the freshwater gastropod Radix balthica (Pulmonata, Basommatophora). Cordellier M; Pfenninger M Mol Ecol; 2009 Feb; 18(3):534-44. PubMed ID: 19161472 [TBL] [Abstract][Full Text] [Related]
74. Forecasting phenology: from species variability to community patterns. Diez JM; Ibáñez I; Miller-Rushing AJ; Mazer SJ; Crimmins TM; Crimmins MA; Bertelsen CD; Inouye DW Ecol Lett; 2012 Jun; 15(6):545-53. PubMed ID: 22433120 [TBL] [Abstract][Full Text] [Related]
75. Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors. Huang Q; Sauer JR; Dubayah RO Glob Chang Biol; 2017 Sep; 23(9):3610-3622. PubMed ID: 28295885 [TBL] [Abstract][Full Text] [Related]
76. A climate change context for the decline of a foundation tree species in south-western Australia: insights from phylogeography and species distribution modelling. Dalmaris E; Ramalho CE; Poot P; Veneklaas EJ; Byrne M Ann Bot; 2015 Nov; 116(6):941-52. PubMed ID: 25851142 [TBL] [Abstract][Full Text] [Related]
77. Eyeworm infections of Oxyspirura petrowi, Skrjabin, 1929 (Spirurida: Thelaziidae), in species of quail from Texas, New Mexico and Arizona, USA. Dunham NR; Kendall RJ J Helminthol; 2017 Jul; 91(4):491-496. PubMed ID: 27411757 [TBL] [Abstract][Full Text] [Related]
78. Assessing the exposure of lion tamarins (Leontopithecus spp.) to future climate change. Meyer AL; Pie MR; Passos FC Am J Primatol; 2014 Jun; 76(6):551-62. PubMed ID: 24346860 [TBL] [Abstract][Full Text] [Related]
79. Increasing potential risk of a global aquatic invader in Europe in contrast to other continents under future climate change. Liu X; Guo Z; Ke Z; Wang S; Li Y PLoS One; 2011 Mar; 6(3):e18429. PubMed ID: 21479188 [TBL] [Abstract][Full Text] [Related]
80. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis. Ihlow F; Courant J; Secondi J; Herrel A; Rebelo R; Measey GJ; Lillo F; De Villiers FA; Vogt S; De Busschere C; Backeljau T; Rödder D PLoS One; 2016; 11(6):e0154869. PubMed ID: 27248830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]