These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 28886108)
21. The genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication. Chen Q; Samayoa LF; Yang CJ; Bradbury PJ; Olukolu BA; Neumeyer MA; Romay MC; Sun Q; Lorant A; Buckler ES; Ross-Ibarra J; Holland JB; Doebley JF PLoS Genet; 2020 May; 16(5):e1008791. PubMed ID: 32407310 [TBL] [Abstract][Full Text] [Related]
22. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Yamasaki M; Tenaillon MI; Bi IV; Schroeder SG; Sanchez-Villeda H; Doebley JF; Gaut BS; McMullen MD Plant Cell; 2005 Nov; 17(11):2859-72. PubMed ID: 16227451 [TBL] [Abstract][Full Text] [Related]
23. Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus. Clark RM; Tavaré S; Doebley J Mol Biol Evol; 2005 Nov; 22(11):2304-12. PubMed ID: 16079248 [TBL] [Abstract][Full Text] [Related]
24. The effects of artificial selection on the maize genome. Wright SI; Bi IV; Schroeder SG; Yamasaki M; Doebley JF; McMullen MD; Gaut BS Science; 2005 May; 308(5726):1310-4. PubMed ID: 15919994 [TBL] [Abstract][Full Text] [Related]
25. Genomics of Long- and Short-Term Adaptation in Maize and Teosintes. Lorant A; Ross-Ibarra J; Tenaillon M Methods Mol Biol; 2020; 2090():289-311. PubMed ID: 31975172 [TBL] [Abstract][Full Text] [Related]
26. Patterns of selection and tissue-specific expression among maize domestication and crop improvement loci. Hufford KM; Canaran P; Ware DH; McMullen MD; Gaut BS Plant Physiol; 2007 Jul; 144(3):1642-53. PubMed ID: 17496114 [TBL] [Abstract][Full Text] [Related]
27. Genetic Architecture of Domestication-Related Traits in Maize. Xue S; Bradbury PJ; Casstevens T; Holland JB Genetics; 2016 Sep; 204(1):99-113. PubMed ID: 27412713 [TBL] [Abstract][Full Text] [Related]
28. Spontaneous hybridization between maize and teosinte. Ellstrand NC; Garner LC; Hegde S; Guadagnuolo R; Blancas L J Hered; 2007; 98(2):183-7. PubMed ID: 17400586 [TBL] [Abstract][Full Text] [Related]
29. Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte. Samayoa LF; Olukolu BA; Yang CJ; Chen Q; Stetter MG; York AM; Sanchez-Gonzalez JJ; Glaubitz JC; Bradbury PJ; Romay MC; Sun Q; Yang J; Ross-Ibarra J; Buckler ES; Doebley JF; Holland JB PLoS Genet; 2021 Dec; 17(12):e1009797. PubMed ID: 34928949 [TBL] [Abstract][Full Text] [Related]
30. Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte. Xu G; Cao J; Wang X; Chen Q; Jin W; Li Z; Tian F Plant Cell; 2019 Sep; 31(9):1990-2009. PubMed ID: 31227559 [TBL] [Abstract][Full Text] [Related]
31. Facilitated by nature and agriculture: performance of a specialist herbivore improves with host-plant life history evolution, domestication, and breeding. Dávila-Flores AM; DeWitt TJ; Bernal JS Oecologia; 2013 Dec; 173(4):1425-37. PubMed ID: 23868032 [TBL] [Abstract][Full Text] [Related]
32. The limits of selection during maize domestication. Wang RL; Stec A; Hey J; Lukens L; Doebley J Nature; 1999 Mar; 398(6724):236-9. PubMed ID: 10094045 [TBL] [Abstract][Full Text] [Related]
33. Evidence for a natural allelic series at the maize domestication locus teosinte branched1. Studer AJ; Doebley JF Genetics; 2012 Jul; 191(3):951-8. PubMed ID: 22505628 [TBL] [Abstract][Full Text] [Related]
34. Cloning and expression analysis of hemoglobin genes from maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis). Aréchaga-Ocampo E; Saenz-Rivera J; Sarath G; Klucas RV; Arredondo-Peter R Biochim Biophys Acta; 2001 Nov; 1522(1):1-8. PubMed ID: 11718894 [TBL] [Abstract][Full Text] [Related]
35. Evolutionary and functional genomics of DNA methylation in maize domestication and improvement. Xu G; Lyu J; Li Q; Liu H; Wang D; Zhang M; Springer NM; Ross-Ibarra J; Yang J Nat Commun; 2020 Nov; 11(1):5539. PubMed ID: 33139747 [TBL] [Abstract][Full Text] [Related]
36. Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation. Guo L; Wang X; Zhao M; Huang C; Li C; Li D; Yang CJ; York AM; Xue W; Xu G; Liang Y; Chen Q; Doebley JF; Tian F Curr Biol; 2018 Sep; 28(18):3005-3015.e4. PubMed ID: 30220503 [TBL] [Abstract][Full Text] [Related]
37. The genetics of maize evolution. Doebley J Annu Rev Genet; 2004; 38():37-59. PubMed ID: 15568971 [TBL] [Abstract][Full Text] [Related]
38. Ecogeography of teosinte. Sánchez González JJ; Ruiz Corral JA; García GM; Ojeda GR; Larios LC; Holland JB; Medrano RM; García Romero GE PLoS One; 2018; 13(2):e0192676. PubMed ID: 29451888 [TBL] [Abstract][Full Text] [Related]
39. Largely unlinked gene sets targeted by selection for domestication syndrome phenotypes in maize and sorghum. Lai X; Yan L; Lu Y; Schnable JC Plant J; 2018 Mar; 93(5):843-855. PubMed ID: 29265526 [TBL] [Abstract][Full Text] [Related]
40. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. Liu J; Fernie AR; Yan J Plant Commun; 2020 Jan; 1(1):100010. PubMed ID: 33404535 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]