BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28886151)

  • 1. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand-protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency.
    Delius J; Frank O; Hofmann T
    PLoS One; 2017; 12(9):e0184487. PubMed ID: 28886151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does flavor impact function? Potential consequences of polyphenol-protein interactions in delivery and bioactivity of flavan-3-ols from foods.
    Ferruzzi MG; Bordenave N; Hamaker BR
    Physiol Behav; 2012 Nov; 107(4):591-7. PubMed ID: 22387574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates.
    Angulo J; Enríquez-Navas PM; Nieto PM
    Chemistry; 2010 Jul; 16(26):7803-12. PubMed ID: 20496354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR-based screening methods for lead discovery.
    Vogtherr M; Fiebig K
    EXS; 2003; (93):183-202. PubMed ID: 12613177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand preferences of kringle 2 and homologous domains of human plasminogen: canvassing weak, intermediate, and high-affinity binding sites by 1H-NMR.
    Marti DN; Hu CK; An SS; von Haller P; Schaller J; Llinás M
    Biochemistry; 1997 Sep; 36(39):11591-604. PubMed ID: 9305949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of dietary polyphenols with bovine milk proteins: molecular structure-affinity relationship and influencing bioactivity aspects.
    Xiao J; Mao F; Yang F; Zhao Y; Zhang C; Yamamoto K
    Mol Nutr Food Res; 2011 Nov; 55(11):1637-45. PubMed ID: 21805622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular model for astringency produced by polyphenol/protein interactions.
    Jöbstl E; O'Connell J; Fairclough JP; Williamson MP
    Biomacromolecules; 2004; 5(3):942-9. PubMed ID: 15132685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening protein-small molecule interactions by NMR.
    Davis B
    Methods Mol Biol; 2013; 1008():389-413. PubMed ID: 23729260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical techniques for the study of polyphenol-protein interactions.
    Poklar Ulrih N
    Crit Rev Food Sci Nutr; 2017 Jul; 57(10):2144-2161. PubMed ID: 26566184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (1) H and (13) C NMR spectral assignments of 30 novel n-methoxylated polyphenols containing thiourea skeletons.
    Jung Y; Ahn S; Jung H; Koh D; Lim Y
    Magn Reson Chem; 2016 May; 54(5):403-13. PubMed ID: 26891199
    [No Abstract]   [Full Text] [Related]  

  • 11. Monitoring the Interactions of a Ternary Complex Using NMR Spectroscopy: The Case of Sugars, Polyphenols, and Proteins.
    Faurie B; Dufourc EJ; Laguerre M; Pianet I
    Anal Chem; 2016 Dec; 88(24):12470-12478. PubMed ID: 28193050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of protein-ligand interactions by NMR.
    Furukawa A; Konuma T; Yanaka S; Sugase K
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():47-57. PubMed ID: 27573180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR-based analysis of protein-ligand interactions.
    Cala O; Guillière F; Krimm I
    Anal Bioanal Chem; 2014 Feb; 406(4):943-56. PubMed ID: 23591643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR investigations of protein-carbohydrate interactions: studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N',N"-triacetylchitotriose.
    Asensio JL; Siebert HC; von Der Lieth CW; Laynez J; Bruix M; Soedjanaamadja UM; Beintema JJ; Cañada FJ; Gabius HJ; Jiménez-Barbero J
    Proteins; 2000 Aug; 40(2):218-36. PubMed ID: 10842338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-field solution NMR spectroscopy as a tool for assessing protein interactions with small molecule ligands.
    Skinner AL; Laurence JS
    J Pharm Sci; 2008 Nov; 97(11):4670-95. PubMed ID: 18351634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Astringent Stimuli on Salivary Protein Interactions Elucidated by Complementary Proteomics Approaches.
    Delius J; Médard G; Kuster B; Hofmann T
    J Agric Food Chem; 2017 Mar; 65(10):2147-2154. PubMed ID: 28225606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saturation transfer difference NMR spectroscopy as a technique to investigate protein-carbohydrate interactions in solution.
    Haselhorst T; Lamerz AC; Itzstein Mv
    Methods Mol Biol; 2009; 534():375-86. PubMed ID: 19277538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution NMR Spectroscopy in Target-Based Drug Discovery.
    Li Y; Kang C
    Molecules; 2017 Aug; 22(9):. PubMed ID: 28832542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of salivary proteins in the mechanism of astringency.
    Lee CA; Ismail B; Vickers ZM
    J Food Sci; 2012 Apr; 77(4):C381-7. PubMed ID: 22515235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical removal of background signals from high-throughput (1)H NMR line-broadening ligand-affinity screens.
    Worley B; Sisco NJ; Powers R
    J Biomol NMR; 2015 Sep; 63(1):53-8. PubMed ID: 26156049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.