BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28886200)

  • 1. Screening of transporters to improve xylodextrin utilization in the yeast Saccharomyces cerevisiae.
    Zhang C; Acosta-Sampson L; Yu VY; Cate JHD
    PLoS One; 2017; 12(9):e0184730. PubMed ID: 28886200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation.
    Kim H; Lee WH; Galazka JM; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1087-94. PubMed ID: 24190499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae.
    Lian J; Li Y; HamediRad M; Zhao H
    Biotechnol Bioeng; 2014 Aug; 111(8):1521-31. PubMed ID: 24519319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels.
    Li X; Yu VY; Lin Y; Chomvong K; Estrela R; Park A; Liang JM; Znameroski EA; Feehan J; Kim SR; Jin YS; Glass NL; Cate JH
    Elife; 2015 Feb; 4():. PubMed ID: 25647728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellodextrin transport in yeast for improved biofuel production.
    Galazka JM; Tian C; Beeson WT; Martinez B; Glass NL; Cate JH
    Science; 2010 Oct; 330(6000):84-6. PubMed ID: 20829451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for transceptor function of cellodextrin transporters in Neurospora crassa.
    Znameroski EA; Li X; Tsai JC; Galazka JM; Glass NL; Cate JH
    J Biol Chem; 2014 Jan; 289(5):2610-9. PubMed ID: 24344125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internalization of Heterologous Sugar Transporters by Endogenous α-Arrestins in the Yeast Saccharomyces cerevisiae.
    Sen A; Acosta-Sampson L; Alvaro CG; Ahn JS; Cate JH; Thorner J
    Appl Environ Microbiol; 2016 Dec; 82(24):7074-7085. PubMed ID: 27694235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase.
    Kim H; Oh EJ; Lane ST; Lee WH; Cate JHD; Jin YS
    J Biotechnol; 2018 Jun; 275():53-59. PubMed ID: 29660472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of a critical role for cellodextrin transporte 2 (CDT-2) in both cellulose and hemicellulose degradation and utilization in Neurospora crassa.
    Cai P; Gu R; Wang B; Li J; Wan L; Tian C; Ma Y
    PLoS One; 2014; 9(2):e89330. PubMed ID: 24586693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain.
    Ha SJ; Wei Q; Kim SR; Galazka JM; Cate JH; Jin YS
    Appl Environ Microbiol; 2011 Aug; 77(16):5822-5. PubMed ID: 21705527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Lipomyces starkeyi gene Ls120451 encodes a cellobiose transporter that enables cellobiose fermentation in Saccharomyces cerevisiae.
    de Ruijter JC; Igarashi K; Penttilä M
    FEMS Yeast Res; 2020 May; 20(3):. PubMed ID: 32310262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new diet for yeast to improve biofuel production.
    Galazka JM; Cate JH
    Bioeng Bugs; 2011; 2(4):199-202. PubMed ID: 21637011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters.
    Ha SJ; Galazka JM; Joong Oh E; Kordić V; Kim H; Jin YS; Cate JH
    Metab Eng; 2013 Jan; 15():134-43. PubMed ID: 23178501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins.
    Eriksen DT; Hsieh PC; Lynn P; Zhao H
    Microb Cell Fact; 2013 Jun; 12():61. PubMed ID: 23802545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae.
    Bae YH; Kang KH; Jin YS; Seo JH
    J Biotechnol; 2014 Jan; 169():34-41. PubMed ID: 24184384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The putative cellodextrin transporter-like protein CLP1 is involved in cellulase induction in Neurospora crassa.
    Cai P; Wang B; Ji J; Jiang Y; Wan L; Tian C; Ma Y
    J Biol Chem; 2015 Jan; 290(2):788-96. PubMed ID: 25398875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization.
    Fox JM; Levine SE; Blanch HW; Clark DS
    Biotechnol J; 2012 Mar; 7(3):361-73. PubMed ID: 22228702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation.
    Lee WH; Jin YS
    J Biotechnol; 2017 Mar; 245():1-8. PubMed ID: 28143766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transporter engineering for cellobiose fermentation under lower pH conditions by engineered Saccharomyces cerevisiae.
    Oh EJ; Kwak S; Kim H; Jin YS
    Bioresour Technol; 2017 Dec; 245(Pt B):1469-1475. PubMed ID: 28583406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.