BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 28886218)

  • 1. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae.
    Verwaal R; Buiting-Wiessenhaan N; Dalhuijsen S; Roubos JA
    Yeast; 2018 Feb; 35(2):201-211. PubMed ID: 28886218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases.
    Kim D; Hager M; Brant E; Budak H
    Funct Integr Genomics; 2021 Jul; 21(3-4):355-366. PubMed ID: 33710467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient multiplex CRISPR/Cpf1 (Cas12a) genome editing system in Aspergillus aculeatus TBRC 277.
    Abdulrachman D; Champreda V; Eurwilaichitr L; Chantasingh D; Pootanakit K
    J Biotechnol; 2022 Aug; 355():53-64. PubMed ID: 35788357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae.
    Swiat MA; Dashko S; den Ridder M; Wijsman M; van der Oost J; Daran JM; Daran-Lapujade P
    Nucleic Acids Res; 2017 Dec; 45(21):12585-12598. PubMed ID: 29106617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering CRISPR-Cpf1 crRNAs and mRNAs to maximize genome editing efficiency.
    Li B; Zhao W; Luo X; Zhang X; Li C; Zeng C; Dong Y
    Nat Biomed Eng; 2017 May; 1(5):. PubMed ID: 28840077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae.
    Li ZH; Liu M; Wang FQ; Wei DZ
    Biotechnol Lett; 2018 Aug; 40(8):1253-1261. PubMed ID: 29797148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 8. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang.
    Bin Moon S; Lee JM; Kang JG; Lee NE; Ha DI; Kim DY; Kim SH; Yoo K; Kim D; Ko JH; Kim YS
    Nat Commun; 2018 Sep; 9(1):3651. PubMed ID: 30194297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells.
    Wang Y; Liu KI; Sutrisnoh NB; Srinivasan H; Zhang J; Li J; Zhang F; Lalith CRJ; Xing H; Shanmugam R; Foo JN; Yeo HT; Ooi KH; Bleckwehl T; Par YYR; Lee SM; Ismail NNB; Sanwari NAB; Lee STV; Lew J; Tan MH
    Genome Biol; 2018 May; 19(1):62. PubMed ID: 29843790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a CRISPR/Cpf1 system for multiplex gene editing in Aspergillus oryzae.
    Chen T; Chen Z; Zhang H; Li Y; Yao L; Zeng B; Zhang Z
    Folia Microbiol (Praha); 2024 Apr; 69(2):373-382. PubMed ID: 37490214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells.
    Kleinstiver BP; Tsai SQ; Prew MS; Nguyen NT; Welch MM; Lopez JM; McCaw ZR; Aryee MJ; Joung JK
    Nat Biotechnol; 2016 Aug; 34(8):869-74. PubMed ID: 27347757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Introduced RNA-Only Approach for Plasmid Curing via the CRISPR-Cpf1 System in
    Chen BC; Chen YZ; Lin HY
    Biomolecules; 2023 Oct; 13(10):. PubMed ID: 37892243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of a CRISPR/Cpf1 gene editing system in silkworm Bombyx mori].
    Dong Z; Qin Q; Zhang X; Li K; Chen P; Pan M
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4342-4350. PubMed ID: 34984879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277.
    Abdulrachman D; Eurwilaichitr L; Champreda V; Chantasingh D; Pootanakit K
    BMC Biotechnol; 2021 Feb; 21(1):15. PubMed ID: 33573639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the Direct Repeat Sequence of crRNA for Optimization of FnCpf1-Mediated Genome Editing in Human Cells.
    Lin L; He X; Zhao T; Gu L; Liu Y; Liu X; Liu H; Yang F; Tu M; Tang L; Ge X; Liu C; Zhao J; Song Z; Qu J; Gu F
    Mol Ther; 2018 Nov; 26(11):2650-2657. PubMed ID: 30274789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition.
    Gao P; Yang H; Rajashankar KR; Huang Z; Patel DJ
    Cell Res; 2016 Aug; 26(8):901-13. PubMed ID: 27444870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cpf1 facilitated large fragment deletion in Saccharomyces cerevisiae.
    Li ZH; Liu M; Lyu XM; Wang FQ; Wei DZ
    J Basic Microbiol; 2018 Dec; 58(12):1100-1104. PubMed ID: 30198089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells.
    Tu M; Lin L; Cheng Y; He X; Sun H; Xie H; Fu J; Liu C; Li J; Chen D; Xi H; Xue D; Liu Q; Zhao J; Gao C; Song Z; Qu J; Gu F
    Nucleic Acids Res; 2017 Nov; 45(19):11295-11304. PubMed ID: 28977650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems.
    Wang M; Mao Y; Lu Y; Wang Z; Tao X; Zhu JK
    J Integr Plant Biol; 2018 Aug; 60(8):626-631. PubMed ID: 29762900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas12a Multiplex Genome Editing of Saccharomyces cerevisiae and the Creation of Yeast Pixel Art.
    Ciurkot K; Vonk B; Gorochowski TE; Roubos JA; Verwaal R
    J Vis Exp; 2019 May; (147):. PubMed ID: 31205318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.