These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 28886218)
1. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae. Verwaal R; Buiting-Wiessenhaan N; Dalhuijsen S; Roubos JA Yeast; 2018 Feb; 35(2):201-211. PubMed ID: 28886218 [TBL] [Abstract][Full Text] [Related]
2. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases. Kim D; Hager M; Brant E; Budak H Funct Integr Genomics; 2021 Jul; 21(3-4):355-366. PubMed ID: 33710467 [TBL] [Abstract][Full Text] [Related]
4. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Swiat MA; Dashko S; den Ridder M; Wijsman M; van der Oost J; Daran JM; Daran-Lapujade P Nucleic Acids Res; 2017 Dec; 45(21):12585-12598. PubMed ID: 29106617 [TBL] [Abstract][Full Text] [Related]
5. Engineering CRISPR-Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Li B; Zhao W; Luo X; Zhang X; Li C; Zeng C; Dong Y Nat Biomed Eng; 2017 May; 1(5):. PubMed ID: 28840077 [TBL] [Abstract][Full Text] [Related]
6. Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. Li ZH; Liu M; Wang FQ; Wei DZ Biotechnol Lett; 2018 Aug; 40(8):1253-1261. PubMed ID: 29797148 [TBL] [Abstract][Full Text] [Related]
7. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces. Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561 [No Abstract] [Full Text] [Related]
8. Development of a CRISPR/Cpf1 system for multiplex gene editing in Aspergillus oryzae. Chen T; Chen Z; Zhang H; Li Y; Yao L; Zeng B; Zhang Z Folia Microbiol (Praha); 2024 Apr; 69(2):373-382. PubMed ID: 37490214 [TBL] [Abstract][Full Text] [Related]
9. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang. Bin Moon S; Lee JM; Kang JG; Lee NE; Ha DI; Kim DY; Kim SH; Yoo K; Kim D; Ko JH; Kim YS Nat Commun; 2018 Sep; 9(1):3651. PubMed ID: 30194297 [TBL] [Abstract][Full Text] [Related]
10. Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells. Wang Y; Liu KI; Sutrisnoh NB; Srinivasan H; Zhang J; Li J; Zhang F; Lalith CRJ; Xing H; Shanmugam R; Foo JN; Yeo HT; Ooi KH; Bleckwehl T; Par YYR; Lee SM; Ismail NNB; Sanwari NAB; Lee STV; Lew J; Tan MH Genome Biol; 2018 May; 19(1):62. PubMed ID: 29843790 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Kleinstiver BP; Tsai SQ; Prew MS; Nguyen NT; Welch MM; Lopez JM; McCaw ZR; Aryee MJ; Joung JK Nat Biotechnol; 2016 Aug; 34(8):869-74. PubMed ID: 27347757 [TBL] [Abstract][Full Text] [Related]
12. An Introduced RNA-Only Approach for Plasmid Curing via the CRISPR-Cpf1 System in Chen BC; Chen YZ; Lin HY Biomolecules; 2023 Oct; 13(10):. PubMed ID: 37892243 [TBL] [Abstract][Full Text] [Related]
13. [Development of a CRISPR/Cpf1 gene editing system in silkworm Bombyx mori]. Dong Z; Qin Q; Zhang X; Li K; Chen P; Pan M Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4342-4350. PubMed ID: 34984879 [TBL] [Abstract][Full Text] [Related]
14. Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277. Abdulrachman D; Eurwilaichitr L; Champreda V; Chantasingh D; Pootanakit K BMC Biotechnol; 2021 Feb; 21(1):15. PubMed ID: 33573639 [TBL] [Abstract][Full Text] [Related]
15. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Gao P; Yang H; Rajashankar KR; Huang Z; Patel DJ Cell Res; 2016 Aug; 26(8):901-13. PubMed ID: 27444870 [TBL] [Abstract][Full Text] [Related]
16. CRISPR/Cpf1 facilitated large fragment deletion in Saccharomyces cerevisiae. Li ZH; Liu M; Lyu XM; Wang FQ; Wei DZ J Basic Microbiol; 2018 Dec; 58(12):1100-1104. PubMed ID: 30198089 [TBL] [Abstract][Full Text] [Related]
17. A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Tu M; Lin L; Cheng Y; He X; Sun H; Xie H; Fu J; Liu C; Li J; Chen D; Xi H; Xue D; Liu Q; Zhao J; Gao C; Song Z; Qu J; Gu F Nucleic Acids Res; 2017 Nov; 45(19):11295-11304. PubMed ID: 28977650 [TBL] [Abstract][Full Text] [Related]
18. Engineering the Direct Repeat Sequence of crRNA for Optimization of FnCpf1-Mediated Genome Editing in Human Cells. Lin L; He X; Zhao T; Gu L; Liu Y; Liu X; Liu H; Yang F; Tu M; Tang L; Ge X; Liu C; Zhao J; Song Z; Qu J; Gu F Mol Ther; 2018 Nov; 26(11):2650-2657. PubMed ID: 30274789 [TBL] [Abstract][Full Text] [Related]
19. Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems. Wang M; Mao Y; Lu Y; Wang Z; Tao X; Zhu JK J Integr Plant Biol; 2018 Aug; 60(8):626-631. PubMed ID: 29762900 [TBL] [Abstract][Full Text] [Related]
20. CRISPR/Cas12a Multiplex Genome Editing of Saccharomyces cerevisiae and the Creation of Yeast Pixel Art. Ciurkot K; Vonk B; Gorochowski TE; Roubos JA; Verwaal R J Vis Exp; 2019 May; (147):. PubMed ID: 31205318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]