These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 28886218)

  • 21. Synthetic Oligonucleotides Inhibit CRISPR-Cpf1-Mediated Genome Editing.
    Li B; Zeng C; Li W; Zhang X; Luo X; Zhao W; Zhang C; Dong Y
    Cell Rep; 2018 Dec; 25(12):3262-3272.e3. PubMed ID: 30566855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells.
    Tóth E; Weinhardt N; Bencsura P; Huszár K; Kulcsár PI; Tálas A; Fodor E; Welker E
    Biol Direct; 2016 Sep; 11():46. PubMed ID: 27630115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The crystal structure of Cpf1 in complex with CRISPR RNA.
    Dong D; Ren K; Qiu X; Zheng J; Guo M; Guan X; Liu H; Li N; Zhang B; Yang D; Ma C; Wang S; Wu D; Ma Y; Fan S; Wang J; Gao N; Huang Z
    Nature; 2016 Apr; 532(7600):522-6. PubMed ID: 27096363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants.
    Tang X; Lowder LG; Zhang T; Malzahn AA; Zheng X; Voytas DF; Zhong Z; Chen Y; Ren Q; Li Q; Kirkland ER; Zhang Y; Qi Y
    Nat Plants; 2017 Feb; 3():17018. PubMed ID: 28211909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electroporation of AsCpf1/RNP at the Zygote Stage is an Efficient Genome Editing Method to Generate Knock-Out Mice Deficient in Leukemia Inhibitory Factor.
    Kim YS; Kim GR; Park M; Yang SC; Park SH; Won JE; Lee JH; Shin HE; Song H; Kim HR
    Tissue Eng Regen Med; 2020 Feb; 17(1):45-53. PubMed ID: 32002841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo high-throughput profiling of CRISPR-Cpf1 activity.
    Kim HK; Song M; Lee J; Menon AV; Jung S; Kang YM; Choi JW; Woo E; Koh HC; Nam JW; Kim H
    Nat Methods; 2017 Feb; 14(2):153-159. PubMed ID: 27992409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large chromosomal segment deletions by CRISPR/LbCpf1-mediated multiplex gene editing in soybean.
    Duan K; Cheng Y; Ji J; Wang C; Wei Y; Wang Y
    J Integr Plant Biol; 2021 Sep; 63(9):1620-1631. PubMed ID: 34331750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum.
    Zhang J; Yang F; Yang Y; Jiang Y; Huo YX
    Microb Cell Fact; 2019 Mar; 18(1):60. PubMed ID: 30909908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes.
    Yeo WL; Heng E; Tan LL; Lim YW; Lim YH; Hoon S; Zhao H; Zhang MM; Wong FT
    Biotechnol Bioeng; 2019 Sep; 116(9):2330-2338. PubMed ID: 31090220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient Single-Nucleotide Microbial Genome Editing Achieved Using CRISPR/Cpf1 with Maximally 3'-End-Truncated crRNAs.
    Lee HJ; Kim HJ; Park YJ; Lee SJ
    ACS Synth Biol; 2022 Jun; 11(6):2134-2143. PubMed ID: 35584409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Single Multiplex crRNA Array for FnCpf1-Mediated Human Genome Editing.
    Sun H; Li F; Liu J; Yang F; Zeng Z; Lv X; Tu M; Liu Y; Ge X; Liu C; Zhao J; Zhang Z; Qu J; Song Z; Gu F
    Mol Ther; 2018 Aug; 26(8):2070-2076. PubMed ID: 29910177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1.
    Jiménez A; Hoff B; Revuelta JL
    N Biotechnol; 2020 Jul; 57():29-33. PubMed ID: 32194155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR-Cpf1-mediated genome editing and gene regulation in human cells.
    Li T; Zhu L; Xiao B; Gong Z; Liao Q; Guo J
    Biotechnol Adv; 2019; 37(1):21-27. PubMed ID: 30399413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum.
    Zhao N; Li L; Luo G; Xie S; Lin Y; Han S; Huang Y; Zheng S
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):599-608. PubMed ID: 32876764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida.
    Endo A; Masafumi M; Kaya H; Toki S
    Sci Rep; 2016 Dec; 6():38169. PubMed ID: 27905529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system.
    Zhang J; Hong W; Zong W; Wang P; Wang Y
    J Biotechnol; 2018 Oct; 284():27-30. PubMed ID: 30081040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in
    Yang Z; Edwards H; Xu P
    Metab Eng Commun; 2020 Jun; 10():e00112. PubMed ID: 31867213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis.
    Wu Y; Liu Y; Lv X; Li J; Du G; Liu L
    Biotechnol Bioeng; 2020 Jun; 117(6):1817-1825. PubMed ID: 32129468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing.
    Moreno-Mateos MA; Fernandez JP; Rouet R; Vejnar CE; Lane MA; Mis E; Khokha MK; Doudna JA; Giraldez AJ
    Nat Commun; 2017 Dec; 8(1):2024. PubMed ID: 29222508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.