These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28886254)

  • 1. The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb(II): A review.
    Lin D; Ji R; Wang D; Xiao M; Zhao J; Zou J; Li Y; Qin T; Xing B; Chen Y; Liu P; Wu Z; Wang L; Zhang Q; Chen H; Qin W; Wu D; Liu Y; Liu Y; Li S
    Crit Rev Food Sci Nutr; 2019; 59(3):395-410. PubMed ID: 28886254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosorption of lead ion by lactic acid bacteria and the application in wastewater.
    Liu G; Geng W; Wu Y; Zhang Y; Chen H; Li M; Cao Y
    Arch Microbiol; 2023 Dec; 206(1):18. PubMed ID: 38085370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and identification of an exopolysaccharide-producing lactic acid bacterium strain from Chinese Paocai and biosorption of Pb(II) by its exopolysaccharide.
    Feng M; Chen X; Li C; Nurgul R; Dong M
    J Food Sci; 2012 Jun; 77(6):T111-7. PubMed ID: 22671533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater.
    Sulaymon AH; Ebrahim SE; Mohammed-Ridha MJ
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):175-87. PubMed ID: 22427177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosorption of lead(II) from aqueous solution by lactic acid bacteria.
    Dai QH; Bian XY; Li R; Jiang CB; Ge JM; Li BL; Ou J
    Water Sci Technol; 2019 Feb; 79(4):627-634. PubMed ID: 30975929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiality of phosphorus-accumulating organisms biomasses in biosorption of Cd(II), Pb(II), Cu(II) and Zn(II) from aqueous solutions: Behaviors and mechanisms.
    Li Q; Wang L; Xu R; Yang Y; Yin H; Jin S; Jiang T
    Chemosphere; 2022 Sep; 303(Pt 2):135095. PubMed ID: 35618058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium, kinetic, and thermodynamic studies on the biosorption of lead by human metallothionein gene-cloned bacteria as a novel biosorbent.
    Akkurt Ş; Uçkun AA; Oğuz M; Uçkun M; Kahraman H
    Water Environ Res; 2024 Feb; 96(2):e11000. PubMed ID: 38385887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorption characteristics of Bacillus gibsonii S-2 waste biomass for removal of lead (II) from aqueous solution.
    Zhang B; Fan R; Bai Z; Wang S; Wang L; Shi J
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1367-73. PubMed ID: 22961488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal biosorption--an alternative to meet the challenges of heavy metal pollution in aqueous solutions.
    Dhankhar R; Hooda A
    Environ Technol; 2011 Apr; 32(5-6):467-91. PubMed ID: 21877528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of heavy metals by a lead (Pb) resistant bacterium, Staphylococcus hominis strain AMB-2.
    Rahman Z; Thomas L; Singh VP
    J Basic Microbiol; 2019 May; 59(5):477-486. PubMed ID: 30900761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb(II).
    Gola D; Malik A; Namburath M; Ahammad SZ
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20486-20496. PubMed ID: 28965177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein.
    Kinoshita H; Sohma Y; Ohtake F; Ishida M; Kawai Y; Kitazawa H; Saito T; Kimura K
    Res Microbiol; 2013 Sep; 164(7):701-9. PubMed ID: 23603782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metals remediation through lactic acid bacteria: Current status and future prospects.
    Ma X
    Sci Total Environ; 2024 Oct; 946():174455. PubMed ID: 38964392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms.
    Priya AK; Gnanasekaran L; Dutta K; Rajendran S; Balakrishnan D; Soto-Moscoso M
    Chemosphere; 2022 Nov; 307(Pt 4):135957. PubMed ID: 35985378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremoval of heavy metals by bacterial biomass.
    Aryal M; Liakopoulou-Kyriakides M
    Environ Monit Assess; 2015 Jan; 187(1):4173. PubMed ID: 25471624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018.
    Ameen FA; Hamdan AM; El-Naggar MY
    Sci Rep; 2020 Jan; 10(1):314. PubMed ID: 31941935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential use of algae for heavy metal bioremediation, a critical review.
    Zeraatkar AK; Ahmadzadeh H; Talebi AF; Moheimani NR; McHenry MP
    J Environ Manage; 2016 Oct; 181():817-831. PubMed ID: 27397844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation.
    Hansda A; Kumar V; Anshumali
    World J Microbiol Biotechnol; 2016 Oct; 32(10):170. PubMed ID: 27565780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosorption of Heavy Metals by Lactic Acid Bacteria for Detoxification.
    Kinoshita H
    Methods Mol Biol; 2019; 1887():145-157. PubMed ID: 30506256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for chromium bioremediation of tannery effluent.
    Garg SK; Tripathi M; Srinath T
    Rev Environ Contam Toxicol; 2012; 217():75-140. PubMed ID: 22350558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.