BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28886457)

  • 1. Competition-derived FRET-switching cationic conjugated polymer-Ir(III) complex probe for thrombin detection.
    Du C; Hu Y; Zhang Q; Guo Z; Ge G; Wang S; Zhai C; Zhu M
    Biosens Bioelectron; 2018 Feb; 100():132-138. PubMed ID: 28886457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma.
    Wang Y; Bao L; Liu Z; Pang DW
    Anal Chem; 2011 Nov; 83(21):8130-7. PubMed ID: 21923110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thioflavin T as an Efficient G-Quadruplex Inducer for the Highly Sensitive Detection of Thrombin Using a New Föster Resonance Energy Transfer System.
    Liu X; Hua X; Fan Q; Chao J; Su S; Huang YQ; Wang L; Huang W
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16458-65. PubMed ID: 26173915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection.
    Chang H; Tang L; Wang Y; Jiang J; Li J
    Anal Chem; 2010 Mar; 82(6):2341-6. PubMed ID: 20180560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target-induced conjunction of split aptamer fragments and assembly with a water-soluble conjugated polymer for improved protein detection.
    Liu X; Shi L; Hua X; Huang Y; Su S; Fan Q; Wang L; Huang W
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3406-12. PubMed ID: 24512085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free detection of histone based on cationic conjugated polymer-mediated fluorescence resonance energy transfer.
    Lu X; Jia H; Yan X; Wang J; Wang Y; Liu C
    Talanta; 2018 Apr; 180():150-155. PubMed ID: 29332793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel nanosensor composed of aptamer bio-dots and gold nanoparticles for determination of thrombin with multiple signals.
    Kuang L; Cao SP; Zhang L; Li QH; Liu ZC; Liang RP; Qiu JD
    Biosens Bioelectron; 2016 Nov; 85():798-806. PubMed ID: 27288712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptamer-based turn-on detection of thrombin in biological fluids based on efficient phosphorescence energy transfer from Mn-doped ZnS quantum dots to carbon nanodots.
    Zhang L; Cui P; Zhang B; Gao F
    Chemistry; 2013 Jul; 19(28):9242-50. PubMed ID: 23712510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thrombin Ultrasensitive Detection Based on Chiral Supramolecular Assembly Signal-Amplified Strategy Induced by Thrombin-Binding Aptamer.
    Shen G; Zhang H; Yang C; Yang Q; Tang Y
    Anal Chem; 2017 Jan; 89(1):548-551. PubMed ID: 27958723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of smart nanoparticle-aptamer sensing technology.
    Zhang H; Stockley PG; Zhou D
    Faraday Discuss; 2011; 149():319-32; discussion 333-56. PubMed ID: 21413189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics.
    Wang Y; Gan N; Zhou Y; Li T; Cao Y; Chen Y
    Biosens Bioelectron; 2017 Jan; 87():508-513. PubMed ID: 27596250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A colorimetric aptamer biosensor based on cationic polymer and gold nanoparticles for the ultrasensitive detection of thrombin.
    Chen Z; Tan Y; Zhang C; Yin L; Ma H; Ye N; Qiang H; Lin Y
    Biosens Bioelectron; 2014 Jun; 56():46-50. PubMed ID: 24463195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sensitive strategy for label-free and time-resolved fluorescence assay of thrombin using Tb-complex and unmodified gold nanoparticles.
    Huang D; Niu C; Li Z; Ruan M; Wang X; Zeng G
    Analyst; 2012 Dec; 137(23):5607-13. PubMed ID: 23074705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sensitive biomolecules detection device with catalytic hairpin assembly and cationic conjugated polymer-assisted dual signal amplification strategy.
    Zhang Z; Xiang X; Hu Y; Deng Y; Li L; Zhao W; Wu T
    Talanta; 2021 Feb; 223(Pt 1):121716. PubMed ID: 33303163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of thrombin using an excimer aptamer switch labeled with dual pyrene molecules.
    Zhao Q; Cheng L
    Anal Bioanal Chem; 2013 Oct; 405(25):8233-9. PubMed ID: 23912830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRET-based dimeric aptamer probe for selective and sensitive Lup an 1 allergen detection.
    Mairal T; Nadal P; Svobodova M; O'Sullivan CK
    Biosens Bioelectron; 2014 Apr; 54():207-10. PubMed ID: 24280051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection.
    Chi CW; Lao YH; Li YS; Chen LC
    Biosens Bioelectron; 2011 Mar; 26(7):3346-52. PubMed ID: 21306887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved fluorescence aptamer-based sandwich assay for thrombin detection.
    Huang DW; Niu CG; Qin PZ; Ruan M; Zeng GM
    Talanta; 2010 Nov; 83(1):185-9. PubMed ID: 21035662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-pair fluorescence resonance energy transfer (spFRET) for the high sensitivity analysis of low-abundance proteins using aptamers as molecular recognition elements.
    Lee W; Obubuafo A; Lee YI; Davis LM; Soper SA
    J Fluoresc; 2010 Jan; 20(1):203-13. PubMed ID: 19802688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptamer-based sensing for thrombin in red region via fluorescence resonant energy transfer between NaYF₄:Yb,Er upconversion nanoparticles and gold nanorods.
    Chen H; Yuan F; Wang S; Xu J; Zhang Y; Wang L
    Biosens Bioelectron; 2013 Oct; 48():19-25. PubMed ID: 23639344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.