BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28886648)

  • 1. Critical size dependence of domain formation observed in coarse-grained simulations of bilayers composed of ternary lipid mixtures.
    Pantelopulos GA; Nagai T; Bandara A; Panahi A; Straub JE
    J Chem Phys; 2017 Sep; 147(9):095101. PubMed ID: 28886648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regimes of Complex Lipid Bilayer Phases Induced by Cholesterol Concentration in MD Simulation.
    Pantelopulos GA; Straub JE
    Biophys J; 2018 Dec; 115(11):2167-2178. PubMed ID: 30414630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning membrane phase separation using nonlipid amphiphiles.
    Muddana HS; Chiang HH; Butler PJ
    Biophys J; 2012 Feb; 102(3):489-97. PubMed ID: 22325271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of ternary bilayer mixtures with asymmetric or symmetric unsaturated phosphatidylcholine lipids by coarse grained molecular dynamics simulations.
    Rosetti C; Pastorino C
    J Phys Chem B; 2012 Mar; 116(11):3525-37. PubMed ID: 22369354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boundary lipids of the nicotinic acetylcholine receptor: Spontaneous partitioning via coarse-grained molecular dynamics simulation.
    Sharp L; Salari R; Brannigan G
    Biochim Biophys Acta Biomembr; 2019 Apr; 1861(4):887-896. PubMed ID: 30664881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations.
    Wang Y; Gkeka P; Fuchs JE; Liedl KR; Cournia Z
    Biochim Biophys Acta; 2016 Nov; 1858(11):2846-2857. PubMed ID: 27526680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the impact of proteins on the line tension of a phase-separating ternary lipid mixture.
    Bandara A; Panahi A; Pantelopulos GA; Nagai T; Straub JE
    J Chem Phys; 2019 May; 150(20):204702. PubMed ID: 31153187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPICA Force Field for Lipid Membranes: Domain Formation Induced by Cholesterol.
    Seo S; Shinoda W
    J Chem Theory Comput; 2019 Jan; 15(1):762-774. PubMed ID: 30514078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomistic simulation of cholesterol effects on miscibility of saturated and unsaturated phospholipids: implications for liquid-ordered/liquid-disordered phase coexistence.
    de Joannis J; Coppock PS; Yin F; Mori M; Zamorano A; Kindt JT
    J Am Chem Soc; 2011 Mar; 133(10):3625-34. PubMed ID: 21341653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised Machine Learning for Analysis of Phase Separation in Ternary Lipid Mixture.
    Löpez CA; Vesselinov VV; Gnanakaran S; Alexandrov BS
    J Chem Theory Comput; 2019 Nov; 15(11):6343-6357. PubMed ID: 31476122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.
    Bakht O; Pathak P; London E
    Biophys J; 2007 Dec; 93(12):4307-18. PubMed ID: 17766350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleaflet interaction and asymmetry in phase separated lipid bilayers: molecular dynamics simulations.
    Perlmutter JD; Sachs JN
    J Am Chem Soc; 2011 May; 133(17):6563-77. PubMed ID: 21473645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase separation in a lipid/cholesterol system: comparison of coarse-grained and united-atom simulations.
    Hakobyan D; Heuer A
    J Phys Chem B; 2013 Apr; 117(14):3841-51. PubMed ID: 23470157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulations of the phase separation in model membranes.
    Baoukina S; Mendez-Villuendas E; Bennett WF; Tieleman DP
    Faraday Discuss; 2013; 161():63-75; discussion 113-50. PubMed ID: 23805738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A coarse-grained molecular dynamics investigation of the phase behavior of DPPC/cholesterol mixtures.
    Zhang Y; Lervik A; Seddon J; Bresme F
    Chem Phys Lipids; 2015 Jan; 185():88-98. PubMed ID: 25087883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilayer compositional asymmetry influences the nanoscopic to macroscopic phase domain size transition.
    Mohideen N; Weiner MD; Feigenson GW
    Chem Phys Lipids; 2020 Oct; 232():104972. PubMed ID: 32941827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key molecular requirements for raft formation in lipid/cholesterol membranes.
    Hakobyan D; Heuer A
    PLoS One; 2014; 9(2):e87369. PubMed ID: 24498317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics and stability of lipid bilayers modulated by thermosensitive polypeptides, cholesterols, and PEGylated lipids.
    Lee H; Kim HR; Park JC
    Phys Chem Chem Phys; 2014 Feb; 16(8):3763-70. PubMed ID: 24429702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-liquid phase transition temperatures increase when lipid bilayers are supported on glass.
    Gunderson RS; Honerkamp-Smith AR
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1965-1971. PubMed ID: 29752899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.