These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28886658)

  • 1. Communication: Hypothetical ultralow-density ice polymorphs.
    Matsui T; Hirata M; Yagasaki T; Matsumoto M; Tanaka H
    J Chem Phys; 2017 Sep; 147(9):091101. PubMed ID: 28886658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultralow-density porous ice with the largest internal cavity identified in the water phase diagram.
    Liu Y; Huang Y; Zhu C; Li H; Zhao J; Wang L; Ojamäe L; Francisco JS; Zeng XC
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12684-12691. PubMed ID: 31182582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of hot ice caused by carbon nanobrushes. II. Dependency on the radius of nanotubes.
    Matsumoto M; Yagasaki T; Tanaka H
    J Chem Phys; 2021 Mar; 154(9):094502. PubMed ID: 33685157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supersolidity of undercoordinated and hydrating water.
    Sun CQ
    Phys Chem Chem Phys; 2018 Dec; 20(48):30104-30119. PubMed ID: 30512022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase Diagrams of TIP4P/2005, SPC/E, and TIP5P Water at High Pressure.
    Yagasaki T; Matsumoto M; Tanaka H
    J Phys Chem B; 2018 Aug; 122(31):7718-7725. PubMed ID: 30016105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of NVE classical trajectories as a tool for molecular crystal structure prediction, with tests on ice polymorphs.
    Buch V; Martonák R; Parrinello M
    J Chem Phys; 2006 May; 124(20):204705. PubMed ID: 16774362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of porous ice frameworks at room temperature.
    Liu Y; Zhu W; Jiang J; Zhu C; Liu C; Slater B; Ojamäe L; Francisco JS; Zeng XC
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34326263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III.
    Huang Y; Zhu C; Wang L; Cao X; Su Y; Jiang X; Meng S; Zhao J; Zeng XC
    Sci Adv; 2016 Feb; 2(2):e1501010. PubMed ID: 26933681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal Structure Prediction via Basin-Hopping Global Optimization Employing Tiny Periodic Simulation Cells, with Application to Water-Ice.
    Burnham CJ; English NJ
    J Chem Theory Comput; 2019 Jun; 15(6):3889-3900. PubMed ID: 31084025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties.
    Kiss PT; Bertsyk P; Baranyai A
    J Chem Phys; 2012 Nov; 137(19):194102. PubMed ID: 23181289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase diagram of ice polymorphs under negative pressure considering the limits of mechanical stability.
    Matsui T; Yagasaki T; Matsumoto M; Tanaka H
    J Chem Phys; 2019 Jan; 150(4):041102. PubMed ID: 30709248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clathrate ice sL: a new crystalline phase of ice with ultralow density predicted by first-principles phase diagram computations.
    Liu Y; Ojamäe L
    Phys Chem Chem Phys; 2018 Mar; 20(12):8333-8340. PubMed ID: 29533403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four phases of amorphous water: Simulations versus experiment.
    Brovchenko I; Oleinikova A
    J Chem Phys; 2006 Apr; 124(16):164505. PubMed ID: 16674144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of selected polarizable and nonpolarizable water models in molecular dynamics simulations of ice I(h).
    Gladich I; Roeselová M
    Phys Chem Chem Phys; 2012 Aug; 14(32):11371-85. PubMed ID: 22801804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phase diagram of water at negative pressures: virtual ices.
    Conde MM; Vega C; Tribello GA; Slater B
    J Chem Phys; 2009 Jul; 131(3):034510. PubMed ID: 19624212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A powerful computational crystallography method to study ice polymorphism.
    Cogoni M; D'Aguanno B; Kuleshova LN; Hofmann DW
    J Chem Phys; 2011 May; 134(20):204506. PubMed ID: 21639455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram.
    Zhu W; Huang Y; Zhu C; Wu HH; Wang L; Bai J; Yang J; Francisco JS; Zhao J; Yuan LF; Zeng XC
    Nat Commun; 2019 Apr; 10(1):1925. PubMed ID: 31028288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation study of metastable ice VII and amorphous phases obtained by its melting.
    Slovák J; Tanaka H
    J Chem Phys; 2005 May; 122(20):204512. PubMed ID: 15945757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrofreezing of confined water.
    Zangi R; Mark AE
    J Chem Phys; 2004 Apr; 120(15):7123-30. PubMed ID: 15267616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.