These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28886720)

  • 1. Development of an electrooculogram-based eye-computer interface for communication of individuals with amyotrophic lateral sclerosis.
    Chang WD; Cha HS; Kim DY; Kim SH; Im CH
    J Neuroeng Rehabil; 2017 Sep; 14(1):89. PubMed ID: 28886720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time "Eye-Writing" Recognition Using Electrooculogram.
    Kwang-Ryeol Lee ; Won-Du Chang ; Sungkean Kim ; Chang-Hwan Im
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):37-48. PubMed ID: 28113859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory Electrooculogram-based Communication System for ALS Patients in Transition from Locked-in to Complete Locked-in State.
    Tonin A; Jaramillo-Gonzalez A; Rana A; Khalili-Ardali M; Birbaumer N; Chaudhary U
    Sci Rep; 2020 May; 10(1):8452. PubMed ID: 32439995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an electrooculogram-based human-computer interface using involuntary eye movement by spatially rotating sound for communication of locked-in patients.
    Kim DY; Han CH; Im CH
    Sci Rep; 2018 Jun; 8(1):9505. PubMed ID: 29934518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrooculograms for Human-Computer Interaction: A Review.
    Chang WD
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31207949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DESIGN AND DEVELOPMENT OF HUMAN COMPUTER INTERFACE USING ELECTROOCULOGRAM WITH DEEP LEARNING.
    Teng G; He Y; Zhao H; Liu D; Xiao J; Ramkumar S
    Artif Intell Med; 2020 Jan; 102():101765. PubMed ID: 31980102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removing the Interdependency between Horizontal and Vertical Eye-Movement Components in Electrooculograms.
    Chang WD; Cha HS; Im CH
    Sensors (Basel); 2016 Feb; 16(2):227. PubMed ID: 26907271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state.
    Käthner I; Kübler A; Halder S
    J Neuroeng Rehabil; 2015 Sep; 12():76. PubMed ID: 26338101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.
    Heo J; Yoon H; Park KS
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the use of electrooculogram for efficient human computer interfaces.
    Usakli AB; Gurkan S; Aloise F; Vecchiato G; Babiloni F
    Comput Intell Neurosci; 2010; 2010():135629. PubMed ID: 19841687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Single-Channel EOG-Based Speller.
    He S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):1978-1987. PubMed ID: 28641264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EOG-sEMG Human Interface for Communication.
    Tamura H; Yan M; Sakurai K; Tanno K
    Comput Intell Neurosci; 2016; 2016():7354082. PubMed ID: 27418924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis.
    Guy V; Soriani MH; Bruno M; Papadopoulo T; Desnuelle C; Clerc M
    Ann Phys Rehabil Med; 2018 Jan; 61(1):5-11. PubMed ID: 29024794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dataset of EEG and EOG from an auditory EOG-based communication system for patients in locked-in state.
    Jaramillo-Gonzalez A; Wu S; Tonin A; Rana A; Ardali MK; Birbaumer N; Chaudhary U
    Sci Data; 2021 Jan; 8(1):8. PubMed ID: 33431874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The eye-tracking computer device for communication in amyotrophic lateral sclerosis.
    Spataro R; Ciriacono M; Manno C; La Bella V
    Acta Neurol Scand; 2014 Jul; 130(1):40-5. PubMed ID: 24350578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH; Williamson J; Won DO; Fazli S; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1443-1459. PubMed ID: 29985154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of EOG-based communication system controlled by eight-directional eye movements.
    Yamagishi K; Hori J; Miyakawa M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2574-7. PubMed ID: 17945724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrooculogram-based binary saccade sequence classification (BSSC) technique for augmentative communication and control.
    Keegan J; Burke E; Condron J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2604-7. PubMed ID: 19965222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eye movement in amyotrophic lateral sclerosis: a longitudinal study.
    Palmowski A; Jost WH; Prudlo J; Osterhage J; Käsmann B; Schimrigk K; Ruprecht KW
    Ger J Ophthalmol; 1995 Nov; 4(6):355-62. PubMed ID: 8751101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System for assisted mobility using eye movements based on electrooculography.
    Barea R; Boquete L; Mazo M; López E
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):209-18. PubMed ID: 12611358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.