BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 28886973)

  • 1. Vocal Tract Morphology in Inhaling Singing: Characteristics During Vowel Production-A Case Study in a Professional Singer.
    Moerman M; Vanhecke F; Van Assche L; Vercruysse J
    J Voice; 2018 Sep; 32(5):643.e17-643.e23. PubMed ID: 28886973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extreme Vocal Effects Distortion, Growl, Grunt, Rattle, and Creaking as Measured by Electroglottography and Acoustics in 32 Healthy Professional Singers.
    Aaen M; McGlashan J; Christoph N; Sadolin C
    J Voice; 2024 May; 38(3):795.e21-795.e35. PubMed ID: 34972633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voice source, formant frequencies and vocal tract shape in overtone singing. A case study.
    Sundberg J; Lindblom B; Hefele AM
    Logoped Phoniatr Vocol; 2023 Jul; 48(2):75-87. PubMed ID: 34860148
    [No Abstract]   [Full Text] [Related]  

  • 4. Formant and Voice Source Characteristics of Vowels in Chinese National Singing and Bel Canto. A Pilot Study.
    Liu W; Wang Y; Liang C
    J Voice; 2023 Nov; ():. PubMed ID: 37940420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deconstructing Timbre into 5 Physiological Parameters: Vocal Mode, Amount of Metal, Degree of Density, Size of Larynx, and Sound Coloring.
    Aaen M; McGlashan J; Christoph N; Sadolin C
    J Voice; 2024 May; 38(3):798.e21-798.e37. PubMed ID: 34973893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vocal Tract and Subglottal Impedance in High Performance Singing: A Case Study.
    Hoyer P; Riedler M; Unterhofer C; Graf S
    J Voice; 2022 Feb; ():. PubMed ID: 35232632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic changes of vocal tract dimensions with sound pressure level during messa di vocea).
    Burk F; Traser L; Burdumy M; Richter B; Echternach M
    J Acoust Soc Am; 2023 Dec; 154(6):3595-3603. PubMed ID: 38038612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Old Myth: Prediction of the Correct Singing Voice Classification. True or not?
    C R; F U; F H; S Z; C S
    J Voice; 2023 Nov; 37(6):968.e13-968.e18. PubMed ID: 34158209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Study on Inspiratory Phonation Using Physical Model of the Vocal Folds.
    Hasegawa H; Nakagawa T; Noguchi K; Tokuda IT
    J Voice; 2022 Feb; ():. PubMed ID: 35227554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonation threshold pressure measurement with a semi-occluded vocal tract.
    Titze IR
    J Speech Lang Hear Res; 2009 Aug; 52(4):1062-72. PubMed ID: 19641082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three Professional Singers' Vocal Tract Dimensions in Operatic Singing, Kulning, and Edge-A Multiple Case Study Examining Loud Singing.
    Ikävalko T; Laukkanen AM; McAllister A; Eklund R; Lammentausta E; Leppävuori M; Nieminen MT
    J Voice; 2022 Mar; ():. PubMed ID: 35277318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Formant Frequencies of Vowels Sung by Sopranos Using Weighted Linear Prediction.
    Barrientos E; Cataldo E
    J Voice; 2023 Nov; ():. PubMed ID: 38000960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship Between Oropharyngeal Geometry and Acoustic Parameters in Singers: A Preliminary Study.
    Nascimento GFD; Silva HJD; Oliveira KGSC; Lira SZ; Gomes AOC
    J Voice; 2022 Aug; ():. PubMed ID: 35961825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paradoxical vocal changes in a trained singer by focally cooling the right superior temporal gyrus.
    Katlowitz KA; Oya H; Howard MA; Greenlee JDW; Long MA
    Cortex; 2017 Apr; 89():111-119. PubMed ID: 28282570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Songbirds tune their vocal tract to the fundamental frequency of their song.
    Riede T; Suthers RA; Fletcher NH; Blevins WE
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5543-8. PubMed ID: 16567614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vocal tract resonances in speech, singing, and playing musical instruments.
    Wolfe J; Garnier M; Smith J
    HFSP J; 2009; 3(1):6-23. PubMed ID: 19649157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of phonation types in singing voice using wavelet scattering network-based features.
    Mittapalle KR; Alku P
    JASA Express Lett; 2024 Jun; 4(6):. PubMed ID: 38847582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond speech: Exploring diversity in the human voice.
    Anikin A; Canessa-Pollard V; Pisanski K; Massenet M; Reby D
    iScience; 2023 Nov; 26(11):108204. PubMed ID: 37908309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Water Resistance Therapy on the Impulse Dispersion of Aerosols During Sustained Phonation.
    Köberlein MC; Hermann L; Gantner S; Tur B; Westphalen C; Kuranova L; Döllinger M; Kniesburges S; Kruse SA; Echternach M
    J Voice; 2022 Jul; ():. PubMed ID: 35803772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustics of Breath Noises in Human Speech: Descriptive and Three-Dimensional Modeling Approaches.
    Werner R; Fuchs S; Trouvain J; Kürbis S; Möbius B; Birkholz P
    J Speech Lang Hear Res; 2023 Nov; ():1-15. PubMed ID: 37971432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.