BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 28887088)

  • 1. Impact of the heart rate on the shape of the cardiac response function.
    de la Cruz F; Schumann A; Köhler S; Bär KJ; Wagner G
    Neuroimage; 2017 Nov; 162():214-225. PubMed ID: 28887088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of physiological response functions to correct for fluctuations in resting-state fMRI related to heart rate and respiration.
    Kassinopoulos M; Mitsis GD
    Neuroimage; 2019 Nov; 202():116150. PubMed ID: 31487547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of heart rate on the BOLD signal: the cardiac response function.
    Chang C; Cunningham JP; Glover GH
    Neuroimage; 2009 Feb; 44(3):857-69. PubMed ID: 18951982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subject specific BOLD fMRI respiratory and cardiac response functions obtained from global signal.
    Falahpour M; Refai H; Bodurka J
    Neuroimage; 2013 May; 72():252-64. PubMed ID: 23376493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of task-related changes in heart rate on estimation of hemodynamic response and model fit.
    Hillenbrand SF; Ivry RB; Schlerf JE
    Neuroimage; 2016 May; 132():455-468. PubMed ID: 26944859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlated slow fluctuations in respiration, EEG, and BOLD fMRI.
    Yuan H; Zotev V; Phillips R; Bodurka J
    Neuroimage; 2013 Oct; 79():81-93. PubMed ID: 23631982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved 7 Tesla resting-state fMRI connectivity measurements by cluster-based modeling of respiratory volume and heart rate effects.
    Pinto J; Nunes S; Bianciardi M; Dias A; Silveira LM; Wald LL; Figueiredo P
    Neuroimage; 2017 Jun; 153():262-272. PubMed ID: 28392488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI.
    Khalili-Mahani N; Chang C; van Osch MJ; Veer IM; van Buchem MA; Dahan A; Beckmann CF; van Gerven JM; Rombouts SA
    Neuroimage; 2013 Jan; 65():499-510. PubMed ID: 23022093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of physiological noise correction on detecting blood oxygenation level-dependent contrast in the breast.
    Wallace TE; Manavaki R; Graves MJ; Patterson AJ; Gilbert FJ
    Phys Med Biol; 2017 Jan; 62(1):127-145. PubMed ID: 27973353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: spatial specificity, test-retest reliability and effect of fMRI sampling rate.
    Golestani AM; Chang C; Kwinta JB; Khatamian YB; Jean Chen J
    Neuroimage; 2015 Jan; 104():266-77. PubMed ID: 25462695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. fMRI in the presence of task-correlated breathing variations.
    Birn RM; Murphy K; Handwerker DA; Bandettini PA
    Neuroimage; 2009 Sep; 47(3):1092-104. PubMed ID: 19460443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Test-retest reliability of the BOLD pharmacological MRI response to ketamine in healthy volunteers.
    De Simoni S; Schwarz AJ; O'Daly OG; Marquand AF; Brittain C; Gonzales C; Stephenson S; Williams SC; Mehta MA
    Neuroimage; 2013 Jan; 64():75-90. PubMed ID: 23009959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using pulse oximetry to account for high and low frequency physiological artifacts in the BOLD signal.
    Verstynen TD; Deshpande V
    Neuroimage; 2011 Apr; 55(4):1633-44. PubMed ID: 21224001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological origin of low-frequency drift in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI).
    Yan L; Zhuo Y; Ye Y; Xie SX; An J; Aguirre GK; Wang J
    Magn Reson Med; 2009 Apr; 61(4):819-27. PubMed ID: 19189286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of abnormal cerebrovascular reactivity on BOLD fMRI: a preliminary investigation of moyamoya disease.
    Mazerolle EL; Ma Y; Sinclair D; Pike GB
    Clin Physiol Funct Imaging; 2018 Jan; 38(1):87-92. PubMed ID: 27572110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image quality, motion artifacts, and reconstruction timing of 64-slice coronary computed tomography angiography with 0.33-second rotation speed.
    Wintersperger BJ; Nikolaou K; von Ziegler F; Johnson T; Rist C; Leber A; Flohr T; Knez A; Reiser MF; Becker CR
    Invest Radiol; 2006 May; 41(5):436-42. PubMed ID: 16625106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adaptive filter for suppression of cardiac and respiratory noise in MRI time series data.
    Deckers RH; van Gelderen P; Ries M; Barret O; Duyn JH; Ikonomidou VN; Fukunaga M; Glover GH; de Zwart JA
    Neuroimage; 2006 Dec; 33(4):1072-81. PubMed ID: 17011214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart rate response to exercise and cardiorespiratory fitness of young women at high familial risk for hypertension: effects of interval vs continuous training.
    Ciolac EG; Bocchi EA; Greve JM; Guimarães GV
    Eur J Cardiovasc Prev Rehabil; 2011 Dec; 18(6):824-30. PubMed ID: 21450597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of radiation dose and heart rate in dual-source computed tomography coronary angiography.
    Laspas F; Tsantioti D; Roussakis A; Kritikos N; Efthimiadou R; Kehagias D; Andreou J
    Acta Radiol; 2011 Apr; 52(3):273-7. PubMed ID: 21498362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New horizons in neurometabolic and neurovascular coupling from calibrated fMRI.
    Shu CY; Sanganahalli BG; Coman D; Herman P; Hyder F
    Prog Brain Res; 2016; 225():99-122. PubMed ID: 27130413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.