These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28887475)

  • 1. Noble UV protective agent for Bacillus thuringiensis based on a combination of graphene oxide and olive oil.
    Maghsoudi S; Jalali E
    Sci Rep; 2017 Sep; 7(1):11019. PubMed ID: 28887475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of olive mill wastewater for protecting Bacillus thuringiensis formulation from UV radiations.
    Jallouli W; Sellami S; Sellami M; Tounsi S
    Acta Trop; 2014 Dec; 140():19-25. PubMed ID: 25093915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet protection of Bacillus thuringiensis through microencapsulation with Pickering emulsion method.
    Jalali E; Maghsoudi S; Noroozian E
    Sci Rep; 2020 Nov; 10(1):20633. PubMed ID: 33244110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method for biosynthesis of different polymorphs of TiO
    Jalali E; Maghsoudi S; Noroozian E
    Sci Rep; 2020 Jan; 10(1):426. PubMed ID: 31949264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp.
    Myasnik M; Manasherob R; Ben-Dov E; Zaritsky A; Margalith Y; Barak Z
    Curr Microbiol; 2001 Aug; 43(2):140-3. PubMed ID: 11391479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of melanin produced by a wild-type strain of Bacillus thuringiensis.
    Chen Y; Deng Y; Wang J; Cai J; Ren G
    J Gen Appl Microbiol; 2004 Aug; 50(4):183-8. PubMed ID: 15754243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance.
    Sanchis V; Gohar M; Chaufaux J; Arantes O; Meier A; Agaisse H; Cayley J; Lereclus D
    Appl Environ Microbiol; 1999 Sep; 65(9):4032-9. PubMed ID: 10473413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Design of the composition of baculovirus agents].
    Kolosov AV; Pugachev VG; Anan'ko GG; Totmenina OD; Kliachko NL; Levashev PA; Kosogova TA
    Vopr Virusol; 2011; 56(5):40-4. PubMed ID: 22171478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV protectants for the biopesticide based on Bacillus sphaericus Neide and their role in protecting the binary toxins from UV radiation.
    Hadapad AB; Hire RS; Vijayalakshmi N; Dongre TK
    J Invertebr Pathol; 2009 Mar; 100(3):147-52. PubMed ID: 19167401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A UV tolerant mutant of Bacillus thuringiensis subsp. kurstaki producing melanin.
    Saxena D; Ben-Dov E; Manasherob R; Barak Z; Boussiba S; Zaritsky A
    Curr Microbiol; 2002 Jan; 44(1):25-30. PubMed ID: 11727037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation and germination of Bacillus thuringiensis spores in Manduca sexta larval gut fluid.
    Wilson GR; Benoit TG
    J Invertebr Pathol; 1990 Sep; 56(2):233-6. PubMed ID: 2273289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ultraviolet radiation on spore viability and mosquitocidal activity of an indigenous ISPC-8 Bacillus sphaericus Neide strain.
    Hadapad AB; Vijayalakshmi N; Hire RS; Dongre TK
    Acta Trop; 2008 Aug; 107(2):113-6. PubMed ID: 18538292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate of Bacillus thuringiensis strains in different insect larvae.
    Suzuki MT; Lereclus D; Arantes OM
    Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyurethane foam as an inert support using concentrated media improves quality and spore production from Bacillus thuringiensis.
    Flores-Tufiño B; Figueroa-Martínez F; Viniegra-González G; Loera O
    World J Microbiol Biotechnol; 2021 Aug; 37(9):154. PubMed ID: 34398297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online monitoring of Escherichia coli and Bacillus thuringiensis spore inactivation after advanced oxidation treatment.
    Sherchan SP; Snyder SA; Gerba CP; Pepper IL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(8):933-9. PubMed ID: 24766594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus thuringiensis as a surrogate for Bacillus anthracis in aerosol research.
    Tufts JA; Calfee MW; Lee SD; Ryan SP
    World J Microbiol Biotechnol; 2014 May; 30(5):1453-61. PubMed ID: 24338558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Bacillus thuringiensis toxin combinations for biological control of lepidopteran larvae.
    Elleuch J; Zghal RZ; Jemaà M; Azzouz H; Tounsi S; Jaoua S
    Int J Biol Macromol; 2014 Apr; 65():148-54. PubMed ID: 24444881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light.
    Griego VM; Spence KD
    Appl Environ Microbiol; 1978 May; 35(5):906-10. PubMed ID: 655707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of Lymantria dispar L. (Lepidoptera: Lymantriidae) to Bacillus thuringiensis subsp. kurstaki at different ingested doses and temperatures.
    van Frankenhuyzen K; Régnière J; Bernier-Cardou M
    J Invertebr Pathol; 2008 Nov; 99(3):263-74. PubMed ID: 18644375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibiotics influence the toxicity of the delta endotoxins of Bacillus thuringiensis towards the cotton bollworm, Helicoverpa armigera.
    Paramasiva I; Sharma HC; Krishnayya PV
    BMC Microbiol; 2014 Jul; 14():200. PubMed ID: 25059716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.