BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28887618)

  • 1. Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis.
    HaiFeng L; YongSheng X; YangQin X; Yu D; ShuaiWen W; XingRu L; JunQiang L
    Neuroradiology; 2017 Nov; 59(11):1083-1092. PubMed ID: 28887618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Added diagnostic values of three-dimensional high-resolution proton density-weighted magnetic resonance imaging for unruptured intracranial aneurysms in the circle-of-Willis: Comparison with time-of-flight magnetic resonance angiography.
    Yim Y; Jung SC; Kim JY; Kim SO; Kim BJ; Lee DH; Park W; Park JC; Ahn JS
    PLoS One; 2020; 15(12):e0243235. PubMed ID: 33270756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional time-of-flight (3D TOF) magnetic resonance angiography (MRA) and contrast-enhanced MRA of intracranial aneurysms treated with platinum coils.
    Wikström J; Ronne-Engström E; Gal G; Enblad P; Tovi M
    Acta Radiol; 2008 Mar; 49(2):190-6. PubMed ID: 18300146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-analysis of computed tomography angiography versus magnetic resonance angiography for intracranial aneurysm.
    Chen X; Liu Y; Tong H; Dong Y; Ma D; Xu L; Yang C
    Medicine (Baltimore); 2018 May; 97(20):e10771. PubMed ID: 29768368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of 4D time-resolved MRA with keyhole and 3D time-of-flight MRA at 3.0 T for the evaluation of cerebral aneurysms.
    Wu Q; Li MH
    BMC Neurol; 2012 Jul; 12():50. PubMed ID: 22784396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnostic value of 3D time-of-flight MRA in trigeminal neuralgia.
    Cai J; Xin ZX; Zhang YQ; Sun J; Lu JL; Xie F
    J Clin Neurosci; 2015 Aug; 22(8):1343-8. PubMed ID: 26077938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: An external clinical validation study.
    Li Y; Zhang H; Sun Y; Fan Q; Wang L; Ji C; HuiGu ; Chen B; Zhao S; Wang D; Yu P; Li J; Yang S; Zhang C; Wang X
    Int J Med Inform; 2024 Aug; 188():105487. PubMed ID: 38761459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms.
    Cirillo M; Scomazzoni F; Cirillo L; Cadioli M; Simionato F; Iadanza A; Kirchin M; Righi C; Anzalone N
    Eur J Radiol; 2013 Dec; 82(12):e853-9. PubMed ID: 24103356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Follow-up of intracranial aneurysms treated by flow diverter: comparison of three-dimensional time-of-flight MR angiography (3D-TOF-MRA) and contrast-enhanced MR angiography (CE-MRA) sequences with digital subtraction angiography as the gold standard.
    Attali J; Benaissa A; Soize S; Kadziolka K; Portefaix C; Pierot L
    J Neurointerv Surg; 2016 Jan; 8(1):81-6. PubMed ID: 25352582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A follow-up study of autosomal dominant polycystic kidney disease with intracranial aneurysms using 3.0 T three-dimensional time-of-flight magnetic resonance angiography.
    Jiang T; Wang P; Qian Y; Zheng X; Xiao L; Yu S; Liu S
    Eur J Radiol; 2013 Nov; 82(11):1840-5. PubMed ID: 23466029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Building Three-Dimensional Intracranial Aneurysm Models from 3D-TOF MRA: a Validation Study.
    Acar T; Karakas AB; Ozer MA; Koc AM; Govsa F
    J Digit Imaging; 2019 Dec; 32(6):963-970. PubMed ID: 31410678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D multimodal image fusion based on MRI in the preoperative evaluation of microvascular decompression: A meta‑analysis.
    Liang C; Yang L; Zhang B; Li R; Guo S
    Exp Ther Med; 2023 Apr; 25(4):171. PubMed ID: 37006872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostic Performance of 0.55 T MRI for Intracranial Aneurysm Detection.
    Osmanodja F; Rösch J; Knott M; Doerfler A; Grodzki D; Uder M; Heiss R
    Invest Radiol; 2023 Feb; 58(2):121-125. PubMed ID: 36070538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Usefulness of high-resolution three-dimensional proton density-weighted turbo spin-echo MRI in distinguishing a junctional dilatation from an intracranial aneurysm of the posterior communicating artery: a pilot study.
    Kim S; Chung J; Cha J; Kim BM; Kim DJ; Kim YB; Lee JW; Huh SK; Park KY
    J Neurointerv Surg; 2020 Mar; 12(3):315-319. PubMed ID: 31337732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usefulness of Noncontrast-Enhanced Silent Magnetic Resonance Angiography (MRA) for Treated Intracranial Aneurysm Follow-up in Comparison with Time-of-Flight MRA.
    Ryu KH; Baek HJ; Moon JI; Choi BH; Park SE; Ha JY; Park H; Kim SS; Kim JS; Cho SB; Carl M
    Neurosurgery; 2020 Aug; 87(2):220-228. PubMed ID: 31625579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic accuracy of dual-source computed tomography angiography for the detection of coronary in-stent restenosis: A systematic review and meta-analysis.
    Liu WJ; Li GZ; Liu HF; Lei JQ
    Echocardiography; 2018 Apr; 35(4):541-550. PubMed ID: 29569751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and characterization of intracranial aneurysms: magnetic resonance angiography versus digital subtraction angiography.
    Shahzad R; Younas F
    J Coll Physicians Surg Pak; 2011 Jun; 21(6):325-9. PubMed ID: 21711985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The clinical value of MRA at 3.0 T for the diagnosis and therapeutic planning of patients with subarachnoid haemorrhage.
    Chen YC; Sun ZK; Li MH; Li YD; Wang W; Tan HQ; Gu BX; Chen SW
    Eur Radiol; 2012 Jul; 22(7):1404-12. PubMed ID: 22453858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Follow-up of coiled cerebral aneurysms: comparison of three-dimensional time-of-flight magnetic resonance angiography at 3 tesla with three-dimensional time-of-flight magnetic resonance angiography and contrast-enhanced magnetic resonance angiography at 1.5 Tesla.
    Anzalone N; Scomazzoni F; Cirillo M; Cadioli M; Iadanza A; Kirchin MA; Scotti G
    Invest Radiol; 2008 Aug; 43(8):559-67. PubMed ID: 18648255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical evaluation of subtracted pointwise encoding time reduction with radial acquisition-based magnetic resonance angiography compared to 3D time-of-flight magnetic resonance angiography for improved flow dephasing at 3 Tesla.
    Fu Q; Zhang XY; Deng XB; Liu DX
    Magn Reson Imaging; 2020 Nov; 73():104-110. PubMed ID: 32858182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.