BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 28887634)

  • 1. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art.
    Shi TQ; Liu GN; Ji RY; Shi K; Song P; Ren LJ; Huang H; Ji XJ
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7435-7443. PubMed ID: 28887634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of CRISPR/Cas9 in genome editing of filamentous fungi.
    Li HH; Liu G
    Yi Chuan; 2017 May; 39(5):355-367. PubMed ID: 28487268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi.
    Ullah M; Xia L; Xie S; Sun S
    Biotechnol Appl Biochem; 2020 Nov; 67(6):835-851. PubMed ID: 33179815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective.
    Song R; Zhai Q; Sun L; Huang E; Zhang Y; Zhu Y; Guo Q; Tian Y; Zhao B; Lu H
    Appl Microbiol Biotechnol; 2019 Sep; 103(17):6919-6932. PubMed ID: 31332488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae.
    Katayama T; Tanaka Y; Okabe T; Nakamura H; Fujii W; Kitamoto K; Maruyama J
    Biotechnol Lett; 2016 Apr; 38(4):637-42. PubMed ID: 26687199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes.
    Schuster M; Kahmann R
    Fungal Genet Biol; 2019 Sep; 130():43-53. PubMed ID: 31048007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-Based Genome Editing in the Filamentous Fungus Fusarium fujikuroi and Its Application in Strain Engineering for Gibberellic Acid Production.
    Shi TQ; Gao J; Wang WJ; Wang KF; Xu GQ; Huang H; Ji XJ
    ACS Synth Biol; 2019 Feb; 8(2):445-454. PubMed ID: 30616338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer.
    Salazar-Cerezo S; Kun RS; de Vries RP; Garrigues S
    Enzyme Microb Technol; 2020 Feb; 133():109463. PubMed ID: 31874686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular tools for gene manipulation in filamentous fungi.
    Wang S; Chen H; Tang X; Zhang H; Chen W; Chen YQ
    Appl Microbiol Biotechnol; 2017 Nov; 101(22):8063-8075. PubMed ID: 28965220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas Genome Editing in Filamentous Fungi.
    Rozhkova AM; Kislitsin VY
    Biochemistry (Mosc); 2021 Jan; 86(Suppl 1):S120-S139. PubMed ID: 33827404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome editing approaches: manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system.
    El-Sayed ASA; Abdel-Ghany SE; Ali GS
    Appl Microbiol Biotechnol; 2017 May; 101(10):3953-3976. PubMed ID: 28389711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of CRISPR in Filamentous Fungi and Macrofungi: From Component Function to Development Potentiality.
    Shen JY; Zhao Q; He QL
    ACS Synth Biol; 2023 Jul; 12(7):1908-1923. PubMed ID: 37404005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex genome editing of microorganisms using CRISPR-Cas.
    Adiego-PĂ©rez B; Randazzo P; Daran JM; Verwaal R; Roubos JA; Daran-Lapujade P; van der Oost J
    FEMS Microbiol Lett; 2019 Apr; 366(8):. PubMed ID: 31087001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing.
    Demirci Y; Zhang B; Unver T
    J Cell Physiol; 2018 Mar; 233(3):1844-1859. PubMed ID: 28430356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR system in filamentous fungi: Current achievements and future directions.
    Deng H; Gao R; Liao X; Cai Y
    Gene; 2017 Sep; 627():212-221. PubMed ID: 28625564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models.
    Shao M; Xu TR; Chen CS
    Dongwuxue Yanjiu; 2016 Jul; 37(4):191-204. PubMed ID: 27469250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas 9-Based Editing in the Production of Bioactive Molecules.
    Bhagwat AC; Patil AM; Saroj SD
    Mol Biotechnol; 2022 Mar; 64(3):245-251. PubMed ID: 34643870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi.
    Jiang C; Lv G; Tu Y; Cheng X; Duan Y; Zeng B; He B
    Front Microbiol; 2021; 12():638096. PubMed ID: 33643273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.