These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 28887746)
1. Diagnosis of multiple sclerosis from EEG signals using nonlinear methods. Torabi A; Daliri MR; Sabzposhan SH Australas Phys Eng Sci Med; 2017 Dec; 40(4):785-797. PubMed ID: 28887746 [TBL] [Abstract][Full Text] [Related]
2. Computer Aided Diagnosis System for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention. Ahmadi A; Davoudi S; Daliri MR Comput Methods Programs Biomed; 2019 Feb; 169():9-18. PubMed ID: 30638593 [TBL] [Abstract][Full Text] [Related]
3. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals. Zarei R; He J; Siuly S; Zhang Y Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489 [TBL] [Abstract][Full Text] [Related]
4. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN. Bascil MS; Tesneli AY; Temurtas F Australas Phys Eng Sci Med; 2016 Sep; 39(3):665-76. PubMed ID: 27376723 [TBL] [Abstract][Full Text] [Related]
5. Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification. Siuly S; Li Y Comput Methods Programs Biomed; 2015 Apr; 119(1):29-42. PubMed ID: 25704869 [TBL] [Abstract][Full Text] [Related]
6. Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Acharya UR; Sree SV; Alvin AP; Yanti R; Suri JS Int J Neural Syst; 2012 Apr; 22(2):1250002. PubMed ID: 23627588 [TBL] [Abstract][Full Text] [Related]
7. [The recognition methodology study of epileptic EEGs based on support vector machine]. Huang R; Du S; Chen Z; Zhangzhen ; Zhouyi Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Oct; 30(5):919-24. PubMed ID: 24459944 [TBL] [Abstract][Full Text] [Related]
9. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Acharya UR; Sree SV; Chattopadhyay S; Yu W; Ang PC Int J Neural Syst; 2011 Jun; 21(3):199-211. PubMed ID: 21656923 [TBL] [Abstract][Full Text] [Related]
10. Major depressive disorder assessment via enhanced k-nearest neighbor method and EEG signals. Saeedi M; Saeedi A; Maghsoudi A Phys Eng Sci Med; 2020 Sep; 43(3):1007-1018. PubMed ID: 32662038 [TBL] [Abstract][Full Text] [Related]
11. Detection of k-complexes in EEG signals using a multi-domain feature extraction coupled with a least square support vector machine classifier. Al-Salman W; Li Y; Wen P Neurosci Res; 2021 Nov; 172():26-40. PubMed ID: 33965451 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of EEG Signals by Spectral Peak Methods and Statistical Correlation for Mental State Discrimination Induced by Arithmetic Tasks. Coman DA; Ionita S; Lita I Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894108 [TBL] [Abstract][Full Text] [Related]
13. Discrimination of stroke-related mild cognitive impairment and vascular dementia using EEG signal analysis. Al-Qazzaz NK; Ali SHBM; Ahmad SA; Islam MS; Escudero J Med Biol Eng Comput; 2018 Jan; 56(1):137-157. PubMed ID: 29119540 [TBL] [Abstract][Full Text] [Related]
14. A feature extraction technique based on tunable Q-factor wavelet transform for brain signal classification. Al Ghayab HR; Li Y; Siuly S; Abdulla S J Neurosci Methods; 2019 Jan; 312():43-52. PubMed ID: 30468823 [TBL] [Abstract][Full Text] [Related]
15. Grasshopper optimization algorithm-based approach for the optimization of ensemble classifier and feature selection to classify epileptic EEG signals. Singh G; Singh B; Kaur M Med Biol Eng Comput; 2019 Jun; 57(6):1323-1339. PubMed ID: 30756231 [TBL] [Abstract][Full Text] [Related]
16. Sleep staging algorithm based on multichannel data adding and multifeature screening. Huang W; Guo B; Shen Y; Tang X; Zhang T; Li D; Jiang Z Comput Methods Programs Biomed; 2020 Apr; 187():105253. PubMed ID: 31812884 [TBL] [Abstract][Full Text] [Related]
17. Automated detection of schizophrenia using nonlinear signal processing methods. Jahmunah V; Lih Oh S; Rajinikanth V; Ciaccio EJ; Hao Cheong K; Arunkumar N; Acharya UR Artif Intell Med; 2019 Sep; 100():101698. PubMed ID: 31607349 [TBL] [Abstract][Full Text] [Related]
18. Revealing False Positive Features in Epileptic EEG Identification. Lian J; Shi Y; Zhang Y; Jia W; Fan X; Zheng Y Int J Neural Syst; 2020 Nov; 30(11):2050017. PubMed ID: 32448016 [TBL] [Abstract][Full Text] [Related]
19. Characterization of fibromyalgia using sleep EEG signals with nonlinear dynamical features. Paul JK; Iype T; R D; Hagiwara Y; Koh JW; Acharya UR Comput Biol Med; 2019 Aug; 111():103331. PubMed ID: 31284155 [TBL] [Abstract][Full Text] [Related]
20. Classification of EEG Signals Based on Pattern Recognition Approach. Amin HU; Mumtaz W; Subhani AR; Saad MNM; Malik AS Front Comput Neurosci; 2017; 11():103. PubMed ID: 29209190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]