These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28887959)

  • 41. Effect of amorphous phases during the hydraulic conversion of α-TCP into calcium-deficient hydroxyapatite.
    Hurle K; Neubauer J; Bohner M; Doebelin N; Goetz-Neunhoeffer F
    Acta Biomater; 2014 Sep; 10(9):3931-41. PubMed ID: 24681375
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of a novel radiopacifier on the properties of an injectable calcium phosphate cement.
    Wang X; Ye J; Wang Y
    Acta Biomater; 2007 Sep; 3(5):757-63. PubMed ID: 17412656
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel skeletal drug-delivery system using self-setting calcium phosphate cement. 4. Effects of the mixing solution volume on the drug-release rate of heterogeneous aspirin-loaded cement.
    Otsuka M; Matsuda Y; Suwa Y; Fox JL; Higuchi WI
    J Pharm Sci; 1994 Feb; 83(2):259-63. PubMed ID: 8169801
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Beta-tricalcium phosphate release from brushite cement surface.
    Alkhraisat MH; Mariño FT; Retama JR; Jerez LB; López-Cabarcos E
    J Biomed Mater Res A; 2008 Mar; 84(3):710-7. PubMed ID: 17635024
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relevance of the setting reaction to the injectability of tricalcium phosphate pastes.
    Montufar EB; Maazouz Y; Ginebra MP
    Acta Biomater; 2013 Apr; 9(4):6188-98. PubMed ID: 23219844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization and in vitro evaluation of biphasic α-tricalcium phosphate/β-tricalcium phosphate cement.
    Arahira T; Maruta M; Matsuya S
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():478-484. PubMed ID: 28254321
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The in situ synthesis of biphasic calcium phosphate scaffolds with controllable compositions, structures, and adjustable properties.
    Guo D; Xu K; Han Y
    J Biomed Mater Res A; 2009 Jan; 88(1):43-52. PubMed ID: 18257062
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Properties of encapsulated and hand-mixed zinc phosphate dental cement.
    Fleming GJ; Landini G; Marquis PM
    Am J Dent; 2002 Apr; 15(2):91-6. PubMed ID: 12092998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities.
    Hofmann MP; Mohammed AR; Perrie Y; Gbureck U; Barralet JE
    Acta Biomater; 2009 Jan; 5(1):43-9. PubMed ID: 18799378
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calcium phosphate cement - gelatin powder composite testing in canine models: Clinical implications for treatment of bone defects.
    Yomoda M; Sobajima S; Kasuya A; Neo M
    J Biomater Appl; 2015 May; 29(10):1385-93. PubMed ID: 25550332
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Newly developed Sr-substituted alpha-TCP bone cements.
    Pina S; Torres PM; Goetz-Neunhoeffer F; Neubauer J; Ferreira JM
    Acta Biomater; 2010 Mar; 6(3):928-35. PubMed ID: 19733700
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography.
    Viani A; Sotiriadis K; Kumpová I; Mancini L; Appavou MS
    Dent Mater; 2017 Apr; 33(4):402-417. PubMed ID: 28222906
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of bone cement that fully transforms to carbonate apatite.
    Cahyanto A; Maruta M; Tsuru K; Matsuya S; Ishikawa K
    Dent Mater J; 2015; 34(3):394-401. PubMed ID: 25948145
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration.
    Montufar EB; Traykova T; Gil C; Harr I; Almirall A; Aguirre A; Engel E; Planell JA; Ginebra MP
    Acta Biomater; 2010 Mar; 6(3):876-85. PubMed ID: 19835998
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive.
    Hesaraki S; Moztarzadeh F; Sharifi D
    J Biomed Mater Res A; 2007 Oct; 83(1):80-7. PubMed ID: 17380498
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Brushite-based calcium phosphate cement with multichannel hydroxyapatite granule loading for improved bone regeneration.
    Sarkar SK; Lee BY; Padalhin AR; Sarker A; Carpena N; Kim B; Paul K; Choi HJ; Bae SH; Lee BT
    J Biomater Appl; 2016 Jan; 30(6):823-37. PubMed ID: 26333790
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Study of the reactivity and in vitro bioactivity of Sr-substituted alpha-TCP cements.
    Saint-Jean SJ; Camiré CL; Nevsten P; Hansen S; Ginebra MP
    J Mater Sci Mater Med; 2005 Nov; 16(11):993-1001. PubMed ID: 16388381
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium-strontium mixed phosphate as novel injectable and radio-opaque hydraulic cement.
    Romieu G; Garric X; Munier S; Vert M; Boudeville P
    Acta Biomater; 2010 Aug; 6(8):3208-15. PubMed ID: 20144746
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiple characterization study on porosity and pore structure of calcium phosphate cements.
    Pastorino D; Canal C; Ginebra MP
    Acta Biomater; 2015 Dec; 28():205-214. PubMed ID: 26384703
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Properties of injectable ready-to-use calcium phosphate cement based on water-immiscible liquid.
    Heinemann S; Rössler S; Lemm M; Ruhnow M; Nies B
    Acta Biomater; 2013 Apr; 9(4):6199-207. PubMed ID: 23261920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.