These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Friendly Fire: Biological Functions and Consequences of Chromosomal Targeting by CRISPR-Cas Systems. Heussler GE; O'Toole GA J Bacteriol; 2016 May; 198(10):1481-6. PubMed ID: 26929301 [TBL] [Abstract][Full Text] [Related]
5. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. Gomaa AA; Klumpe HE; Luo ML; Selle K; Barrangou R; Beisel CL mBio; 2014 Jan; 5(1):e00928-13. PubMed ID: 24473129 [TBL] [Abstract][Full Text] [Related]
6. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity. Maniv I; Jiang W; Bikard D; Marraffini LA J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632 [TBL] [Abstract][Full Text] [Related]
7. Bacterial resistance to CRISPR-Cas antimicrobials. Uribe RV; Rathmer C; Jahn LJ; Ellabaan MMH; Li SS; Sommer MOA Sci Rep; 2021 Aug; 11(1):17267. PubMed ID: 34446818 [TBL] [Abstract][Full Text] [Related]
8. Suppressing the CRISPR/Cas adaptive immune system in bacterial infections. Gholizadeh P; Aghazadeh M; Asgharzadeh M; Kafil HS Eur J Clin Microbiol Infect Dis; 2017 Nov; 36(11):2043-2051. PubMed ID: 28601970 [TBL] [Abstract][Full Text] [Related]
9. Exploiting CRISPR-Cas immune systems for genome editing in bacteria. Barrangou R; van Pijkeren JP Curr Opin Biotechnol; 2016 Feb; 37():61-68. PubMed ID: 26629846 [TBL] [Abstract][Full Text] [Related]
10. Harnessing CRISPR-Cas systems for bacterial genome editing. Selle K; Barrangou R Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413 [TBL] [Abstract][Full Text] [Related]
11. CRISPR-Cas systems and RNA-guided interference. Barrangou R Wiley Interdiscip Rev RNA; 2013; 4(3):267-78. PubMed ID: 23520078 [TBL] [Abstract][Full Text] [Related]
12. Current and future prospects for CRISPR-based tools in bacteria. Luo ML; Leenay RT; Beisel CL Biotechnol Bioeng; 2016 May; 113(5):930-43. PubMed ID: 26460902 [TBL] [Abstract][Full Text] [Related]
13. Outcomes and characterization of chromosomal self-targeting by native CRISPR-Cas systems in Streptococcus thermophilus. Cañez C; Selle K; Goh YJ; Barrangou R FEMS Microbiol Lett; 2019 May; 366(9):. PubMed ID: 31077282 [TBL] [Abstract][Full Text] [Related]
14. CRISPR technologies for bacterial systems: Current achievements and future directions. Choi KR; Lee SY Biotechnol Adv; 2016 Nov; 34(7):1180-1209. PubMed ID: 27566508 [TBL] [Abstract][Full Text] [Related]
15. Harnessing Type I and Type III CRISPR-Cas systems for genome editing. Li Y; Pan S; Zhang Y; Ren M; Feng M; Peng N; Chen L; Liang YX; She Q Nucleic Acids Res; 2016 Feb; 44(4):e34. PubMed ID: 26467477 [TBL] [Abstract][Full Text] [Related]
16. Endogenous CRISPR-Cas System-Based Genome Editing and Antimicrobials: Review and Prospects. Li Y; Peng N Front Microbiol; 2019; 10():2471. PubMed ID: 31708910 [TBL] [Abstract][Full Text] [Related]
17. CRISPR/Cas: from adaptive immune system in prokaryotes to therapeutic weapon against immune-related diseases. Garcia-Robledo JE; Barrera MC; Tobón GJ Int Rev Immunol; 2020; 39(1):11-20. PubMed ID: 31625429 [TBL] [Abstract][Full Text] [Related]
19. On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals. Mojica FJM; Montoliu L Trends Microbiol; 2016 Oct; 24(10):811-820. PubMed ID: 27401123 [TBL] [Abstract][Full Text] [Related]
20. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Jiang W; Marraffini LA Annu Rev Microbiol; 2015; 69():209-28. PubMed ID: 26209264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]