These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 28888188)
21. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides. Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118 [TBL] [Abstract][Full Text] [Related]
22. Microbial reactions and environmental factors affecting the dissolution and release of arsenic in the severely contaminated soils under anaerobic or aerobic conditions. Chen X; Zeng XC; Kawa YK; Wu W; Zhu X; Ullah Z; Wang Y Ecotoxicol Environ Saf; 2020 Feb; 189():109946. PubMed ID: 31759742 [TBL] [Abstract][Full Text] [Related]
23. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. Chen Z; Wang Y; Xia D; Jiang X; Fu D; Shen L; Wang H; Li QB J Hazard Mater; 2016 Jul; 311():20-9. PubMed ID: 26954472 [TBL] [Abstract][Full Text] [Related]
24. Effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper in synthesized Fe(III) minerals and Fe-rich soils. Hu C; Zhang Y; Zhang L; Luo W J Microbiol Biotechnol; 2014 Apr; 24(4):534-44. PubMed ID: 24448165 [TBL] [Abstract][Full Text] [Related]
25. Iron and arsenic release from aquifer solids in response to biostimulation. McLean JE; Dupont RR; Sorensen DL J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439 [TBL] [Abstract][Full Text] [Related]
26. Reductive dissolution and sequestration of arsenic by microbial iron and thiosulfate reduction. Ko MS; Lee S; Kim KW Environ Geochem Health; 2019 Feb; 41(1):461-467. PubMed ID: 29520475 [TBL] [Abstract][Full Text] [Related]
27. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite. Ehlert K; Mikutta C; Kretzschmar R Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611 [TBL] [Abstract][Full Text] [Related]
28. Microbial mobilization of arsenic from iron-bearing clay mineral through iron, arsenate, and simultaneous iron-arsenate reduction pathways. Zhao Z; Meng Y; Yuan Q; Wang Y; Lin L; Liu W; Luan F Sci Total Environ; 2021 Apr; 763():144613. PubMed ID: 33383508 [TBL] [Abstract][Full Text] [Related]
29. Comparison of arsenate reduction and release by three As(V)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China. Cai X; Zhang Z; Yin N; Du H; Li Z; Cui Y Chemosphere; 2016 Oct; 161():200-207. PubMed ID: 27427777 [TBL] [Abstract][Full Text] [Related]
30. Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities. Jiang S; Lee JH; Kim D; Kanaly RA; Kim MG; Hur HG Environ Sci Technol; 2013 Aug; 47(15):8616-23. PubMed ID: 23802758 [TBL] [Abstract][Full Text] [Related]
31. Controlling microbial arsenite oxidation and mobilization in arsenite-adsorbed iron minerals: The Influence of pH conditions and mineralogical composition. Cai X; Zhang Z; Yin N; Lu W; Du H; Yang M; Cui L; Chen S; Cui Y J Hazard Mater; 2022 Jul; 433():128778. PubMed ID: 35358812 [TBL] [Abstract][Full Text] [Related]
32. The effects of biochar as the electron shuttle on the ferrihydrite reduction and related arsenic (As) fate. Wu C; An W; Liu Z; Lin J; Qian Z; Xue S J Hazard Mater; 2020 May; 390():121391. PubMed ID: 31780288 [TBL] [Abstract][Full Text] [Related]
33. Biological effect of phosphate on the dissimilatory arsenate-respiring bacteria-catalyzed reductive mobilization of arsenic from contaminated soils. Shi W; Xu Y; Wu W; Zeng XC Environ Pollut; 2022 Sep; 308():119698. PubMed ID: 35787423 [TBL] [Abstract][Full Text] [Related]
34. Electron Shuttles Enhance Anaerobic Ammonium Oxidation Coupled to Iron(III) Reduction. Zhou GW; Yang XR; Li H; Marshall CW; Zheng BX; Yan Y; Su JQ; Zhu YG Environ Sci Technol; 2016 Sep; 50(17):9298-307. PubMed ID: 27494694 [TBL] [Abstract][Full Text] [Related]
35. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin. Deng Y; Zheng T; Wang Y; Liu L; Jiang H; Ma T Sci Total Environ; 2018 Apr; 619-620():1247-1258. PubMed ID: 29734603 [TBL] [Abstract][Full Text] [Related]
36. AQDS and Redox-Active NOM Enables Microbial Fe(III)-Mineral Reduction at cm-Scales. Bai Y; Mellage A; Cirpka OA; Sun T; Angenent LT; Haderlein SB; Kappler A Environ Sci Technol; 2020 Apr; 54(7):4131-4139. PubMed ID: 32108470 [TBL] [Abstract][Full Text] [Related]
37. Fate of arsenic during microbial reduction of biogenic versus Abiogenic As-Fe(III)-mineral coprecipitates. Muehe EM; Scheer L; Daus B; Kappler A Environ Sci Technol; 2013 Aug; 47(15):8297-307. PubMed ID: 23806105 [TBL] [Abstract][Full Text] [Related]
38. Dissimilatory arsenate-respiring prokaryotes catalyze the dissolution, reduction and release of arsenic from paddy soils into groundwater: implication for the effect of sulfate. Shi W; Wu W; Zeng XC; Chen X; Zhu X; Cheng S Ecotoxicology; 2018 Oct; 27(8):1126-1136. PubMed ID: 30099680 [TBL] [Abstract][Full Text] [Related]
39. Measurement of iron(III) bioavailability in pure iron oxide minerals and soils using anthraquinone-2,6-disulfonate oxidation. Hacherl EL; Kosson DS; Young LY; Cowan RM Environ Sci Technol; 2001 Dec; 35(24):4886-93. PubMed ID: 11775166 [TBL] [Abstract][Full Text] [Related]
40. Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Nicholas DR; Ramamoorthy S; Palace V; Spring S; Moore JN; Rosenzweig RF Biodegradation; 2003 Apr; 14(2):123-37. PubMed ID: 12877467 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]