These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28888552)

  • 1. Chassis and key enzymes engineering for monoterpenes production.
    Zhang L; Xiao WH; Wang Y; Yao MD; Jiang GZ; Zeng BX; Zhang RS; Yuan YJ
    Biotechnol Adv; 2017 Dec; 35(8):1022-1031. PubMed ID: 28888552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase.
    Ignea C; Pontini M; Maffei ME; Makris AM; Kampranis SC
    ACS Synth Biol; 2014 May; 3(5):298-306. PubMed ID: 24847684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of pinene in purple non-sulfur photosynthetic bacteria.
    Wu X; Ma G; Liu C; Qiu XY; Min L; Kuang J; Zhu L
    Microb Cell Fact; 2021 May; 20(1):101. PubMed ID: 34001115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate.
    Ignea C; Raadam MH; Motawia MS; Makris AM; Vickers CE; Kampranis SC
    Nat Commun; 2019 Aug; 10(1):3799. PubMed ID: 31444322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain.
    Pardo E; Rico J; Gil JV; Orejas M
    Microb Cell Fact; 2015 Sep; 14():136. PubMed ID: 26377186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Dynamic control of ERG20 expression to improve production of monoterpenes by engineering Saccharomyces cerevisiae].
    Li RS; Wang D; Shi YS; Xu LP; Zhang XL; Wang K; Dai ZB
    Zhongguo Zhong Yao Za Zhi; 2022 Feb; 47(4):897-905. PubMed ID: 35285188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Engineering of the Native Monoterpene Pathway in Spearmint for Production of Heterologous Monoterpenes Reveals Complex Metabolism and Pathway Interactions.
    Li C; Sarangapani S; Wang Q; Nadimuthu K; Sarojam R
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32859057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial Synthesis of Myrcene by Metabolically Engineered Escherichia coli.
    Kim EM; Eom JH; Um Y; Kim Y; Woo HM
    J Agric Food Chem; 2015 May; 63(18):4606-12. PubMed ID: 25909988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis and production of sabinene: current state and perspectives.
    Cao Y; Zhang H; Liu H; Liu W; Zhang R; Xian M; Liu H
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1535-1544. PubMed ID: 29264773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current Advances in the Bacterial Toolbox for the Biotechnological Production of Monoterpene-Based Aroma Compounds.
    Soares-Castro P; Soares F; Santos PM
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33379215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Saccharomyces cerevisiae for linalool production.
    Amiri P; Shahpiri A; Asadollahi MA; Momenbeik F; Partow S
    Biotechnol Lett; 2016 Mar; 38(3):503-8. PubMed ID: 26614300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial cell factories based on filamentous bacteria, yeasts, and fungi.
    Ding Q; Ye C
    Microb Cell Fact; 2023 Jan; 22(1):20. PubMed ID: 36717860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae.
    Zhao J; Li C; Zhang Y; Shen Y; Hou J; Bao X
    Microb Cell Fact; 2017 Jan; 16(1):17. PubMed ID: 28137282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.
    Zhao J; Bao X; Li C; Shen Y; Hou J
    Appl Microbiol Biotechnol; 2016 May; 100(10):4561-71. PubMed ID: 26883346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal transduction and metabolic flux of beta-thujaplicin and monoterpene biosynthesis in elicited Cupressus lusitanica cell cultures.
    Zhao J; Matsunaga Y; Fujita K; Sakai K
    Metab Eng; 2006 Jan; 8(1):14-29. PubMed ID: 16242983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production.
    Lin L; Xu J
    Biotechnol Adv; 2013 Nov; 31(6):827-37. PubMed ID: 23510903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a monoterpene synthase from Paeonia lactiflora producing α-pinene as its single product.
    Ma X; Guo J; Ma Y; Jin B; Zhan Z; Yuan Y; Huang L
    Biotechnol Lett; 2016 Jul; 38(7):1213-9. PubMed ID: 27053081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli.
    Mendez-Perez D; Alonso-Gutierrez J; Hu Q; Molinas M; Baidoo EEK; Wang G; Chan LJG; Adams PD; Petzold CJ; Keasling JD; Lee TS
    Biotechnol Bioeng; 2017 Aug; 114(8):1703-1712. PubMed ID: 28369701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum.
    Kang MK; Eom JH; Kim Y; Um Y; Woo HM
    Biotechnol Lett; 2014 Oct; 36(10):2069-77. PubMed ID: 24930112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mono and diterpene production in Escherichia coli.
    Reiling KK; Yoshikuni Y; Martin VJ; Newman J; Bohlmann J; Keasling JD
    Biotechnol Bioeng; 2004 Jul; 87(2):200-12. PubMed ID: 15236249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.