These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 28888731)
1. Mechanism for detecting NAPL using electrical resistivity imaging. Halihan T; Sefa V; Sale T; Lyverse M J Contam Hydrol; 2017 Oct; 205():57-69. PubMed ID: 28888731 [TBL] [Abstract][Full Text] [Related]
2. Effect of NAPL Source Morphology on Mass Transfer in the Vadose Zone. Petri BG; Fučík R; Illangasekare TH; Smits KM; Christ JA; Sakaki T; Sauck CC Ground Water; 2015; 53(5):685-98. PubMed ID: 25535651 [TBL] [Abstract][Full Text] [Related]
3. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media. Yoon H; Valocchi AJ; Werth CJ J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872 [TBL] [Abstract][Full Text] [Related]
4. Surfactant flooding makes a comeback: Results of a full-scale, field implementation to recover mobilized NAPL. Sharma P; Kostarelos K; Lenschow S; Christensen A; de Blanc PC J Contam Hydrol; 2020 Mar; 230():103602. PubMed ID: 32005455 [TBL] [Abstract][Full Text] [Related]
5. Enhanced mobility of non aqueous phase liquid (NAPL) during drying of wet sand. Govindarajan D; Deshpande AP; Raghunathan R J Contam Hydrol; 2018 Feb; 209():1-13. PubMed ID: 29329939 [TBL] [Abstract][Full Text] [Related]
6. Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone. Zhu J; Sun D J Contam Hydrol; 2016 Sep; 192():158-164. PubMed ID: 27500747 [TBL] [Abstract][Full Text] [Related]
7. Oscillatory hydraulic testing as a strategy for NAPL source zone monitoring: Laboratory experiments. Zhou Y; Cardiff M J Contam Hydrol; 2017 May; 200():24-34. PubMed ID: 28366611 [TBL] [Abstract][Full Text] [Related]
8. Using a multi-method approach based on soil radon deficit, resistivity, and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India. Castelluccio M; Agrahari S; De Simone G; Pompilj F; Lucchetti C; Sengupta D; Galli G; Friello P; Curatolo P; Giorgi R; Tuccimei P Environ Sci Pollut Res Int; 2018 May; 25(13):12515-12527. PubMed ID: 29464601 [TBL] [Abstract][Full Text] [Related]
9. Investigation of surfactant-enhanced mass removal and flux reduction in 3D correlated permeability fields using magnetic resonance imaging. Zhang C; Werth CJ; Webb AG J Contam Hydrol; 2008 Sep; 100(3-4):116-26. PubMed ID: 18676059 [TBL] [Abstract][Full Text] [Related]
10. Measured mass transfer coefficients in porous media using specific interfacial area. Cho J; Annable MD; Rao PS Environ Sci Technol; 2005 Oct; 39(20):7883-8. PubMed ID: 16295851 [TBL] [Abstract][Full Text] [Related]
11. Simulated formation and flow of microemulsions during surfactant flushing of contaminated soil. Ouyan Y; Cho JS; Mansell RS Water Res; 2002 Jan; 36(1):33-40. PubMed ID: 11766810 [TBL] [Abstract][Full Text] [Related]
12. An environmental screening model to assess the consequences to soil and groundwater from railroad-tank-car spills of light non-aqueous phase liquids. Yoon H; Werth CJ; Barkan CP; Schaeffer DJ; Anand P J Hazard Mater; 2009 Jun; 165(1-3):332-44. PubMed ID: 19036513 [TBL] [Abstract][Full Text] [Related]
13. Laboratory study of creosote removal from sand at elevated temperatures. Hicknell BN; Mumford KG; Kueper BH J Contam Hydrol; 2018 Dec; 219():40-49. PubMed ID: 30396790 [TBL] [Abstract][Full Text] [Related]
14. Mobilizing particles in a saturated zone during air sparging. Tsai YJ; Lin DF Environ Sci Technol; 2004 Jan; 38(2):643-9. PubMed ID: 14750743 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional visualization and quantification of non-aqueous phase liquid volumes in natural porous media using a medical X-ray Computed Tomography scanner. Goldstein L; Prasher SO; Ghoshal S J Contam Hydrol; 2007 Aug; 93(1-4):96-110. PubMed ID: 17350716 [TBL] [Abstract][Full Text] [Related]
16. Monitoring redox sensitive conditions at the groundwater interface using electrical resistivity and self-potential. Fernandez PM; Bloem E; Binley A; Philippe RSBA; French HK J Contam Hydrol; 2019 Oct; 226():103517. PubMed ID: 31280034 [TBL] [Abstract][Full Text] [Related]
17. Study on diesel vertical migration characteristics and mechanism in water-bearing sand stratum using an automated resistivity monitoring system. Pan Y; Jia Y; Wang Y; Xia X; Guo L Environ Sci Pollut Res Int; 2018 Feb; 25(4):3802-3812. PubMed ID: 29177997 [TBL] [Abstract][Full Text] [Related]
18. Comparison of theory and experiment for NAPL dissolution in porous media. Bahar T; Golfier F; Oltéan C; Lefevre E; Lorgeoux C J Contam Hydrol; 2018 Apr; 211():49-64. PubMed ID: 29573829 [TBL] [Abstract][Full Text] [Related]
19. Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils. Yoon GL; Park JB J Hazard Mater; 2001 Jun; 84(2-3):147-61. PubMed ID: 11406303 [TBL] [Abstract][Full Text] [Related]
20. Post-remediation evaluation of a LNAPL site using electrical resistivity imaging. Halihan T; Paxton S; Graham I; Fenstemaker T; Riley M J Environ Monit; 2005 Apr; 7(4):283-7. PubMed ID: 15798793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]