BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 28888934)

  • 1. Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing.
    Jetté B; Brailovski V; Dumas M; Simoneau C; Terriault P
    J Mech Behav Biomed Mater; 2018 Jan; 77():58-72. PubMed ID: 28888934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem.
    Jetté B; Brailovski V; Simoneau C; Dumas M; Terriault P
    J Mech Behav Biomed Mater; 2018 Jan; 77():539-550. PubMed ID: 29069636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the design and properties of porous femoral stems with adjustable stiffness gradient.
    Wang S; Zhou X; Liu L; Shi Z; Hao Y
    Med Eng Phys; 2020 Jul; 81():30-38. PubMed ID: 32505662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element study of functionally graded porous femoral stems incorporating body-centered cubic structure.
    Alkhatib SE; Tarlochan F; Mehboob H; Singh R; Kadirgama K; Harun WSBW
    Artif Organs; 2019 Jul; 43(7):E152-E164. PubMed ID: 30805945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem.
    Mehboob H; Tarlochan F; Mehboob A; Chang SH; Ramesh S; Harun WSW; Kadirgama K
    J Mater Sci Mater Med; 2020 Aug; 31(9):78. PubMed ID: 32816091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK.
    Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL
    J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique.
    Hara D; Nakashima Y; Sato T; Hirata M; Kanazawa M; Kohno Y; Yoshimoto K; Yoshihara Y; Nakamura A; Nakao Y; Iwamoto Y
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1047-1052. PubMed ID: 26652463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of an endoprosthesis designed with graded density lattice structures.
    Sh Sufiiarov V; V Borisov E; V Sokolova V; O Chukovenkova M; V Soklakov A; S Mikhaluk D; A Popovich A
    Int J Numer Method Biomed Eng; 2021 Feb; 37(2):e3420. PubMed ID: 33249737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.
    Melancon D; Bagheri ZS; Johnston RB; Liu L; Tanzer M; Pasini D
    Acta Biomater; 2017 Nov; 63():350-368. PubMed ID: 28927929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-vitro biomechanical evaluation of stress shielding and initial stability of a low-modulus hip stem made of β type Ti-33.6Nb-4Sn alloy.
    Yamako G; Chosa E; Totoribe K; Hanada S; Masahashi N; Yamada N; Itoi E
    Med Eng Phys; 2014 Dec; 36(12):1665-71. PubMed ID: 25282098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical investigation into the influence of the properties of cobalt chrome cellular structures on the load transfer to the periprosthetic femur following total hip arthroplasty.
    Hazlehurst KB; Wang CJ; Stanford M
    Med Eng Phys; 2014 Apr; 36(4):458-66. PubMed ID: 24613500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving stress shielding following total hip arthroplasty by using a femoral stem made of β type Ti-33.6Nb-4Sn with a Young's modulus gradation.
    Yamako G; Janssen D; Hanada S; Anijs T; Ochiai K; Totoribe K; Chosa E; Verdonschot N
    J Biomech; 2017 Oct; 63():135-143. PubMed ID: 28882332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone.
    Wieding J; Wolf A; Bader R
    J Mech Behav Biomed Mater; 2014 Sep; 37():56-68. PubMed ID: 24942627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a biomimetic polymer-composite hip prosthesis.
    Bougherara H; Bureau M; Campbell M; Vadean A; Yahia L
    J Biomed Mater Res A; 2007 Jul; 82(1):27-40. PubMed ID: 17265439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions.
    Wieding J; Souffrant R; Mittelmeier W; Bader R
    Med Eng Phys; 2013 Apr; 35(4):422-32. PubMed ID: 22809675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty.
    Arabnejad S; Johnston B; Tanzer M; Pasini D
    J Orthop Res; 2017 Aug; 35(8):1774-1783. PubMed ID: 27664796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive analysis of bio-inspired design of femoral stem on primary and secondary stabilities using mechanoregulatory algorithm.
    Mehboob H; Ahmad F; Tarlochan F; Mehboob A; Chang SH
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2213-2226. PubMed ID: 32388685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials.
    Zhang XY; Fang G; Leeflang S; Zadpoor AA; Zhou J
    Acta Biomater; 2019 Jan; 84():437-452. PubMed ID: 30537537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased stability of short femoral stem through customized distribution of coefficient of friction in porous coating.
    Solou K; Solou AV; Tatani I; Lakoumentas J; Tserpes K; Megas P
    Sci Rep; 2024 May; 14(1):12243. PubMed ID: 38806607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.