BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28888939)

  • 1. Water isotope effect on the lipidic cubic phase: Heavy water-Induced interfacial area reduction of monoolein-Water system.
    Takahashi H; Jojiki K
    Chem Phys Lipids; 2017 Nov; 208():52-57. PubMed ID: 28888939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of lamellar-to-cubic and intercubic phase transitions of pure and cytochrome c containing monoolein dispersions monitored by time-resolved small-angle X-ray diffraction.
    Kraineva J; Narayanan RA; Kondrashkina E; Thiyagarajan P; Winter R
    Langmuir; 2005 Apr; 21(8):3559-71. PubMed ID: 15807602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of the effects of dimethylsulfoxide and glycerol on the bicontinuous cubic structure of hydrated monoolein and its phase behavior.
    Abe S; Takahashi H
    Chem Phys Lipids; 2007 Jun; 147(2):59-68. PubMed ID: 17451662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pressure and temperature on the self-assembled fully hydrated nanostructures of monoolein-oil systems.
    Yaghmur A; Kriechbaum M; Amenitsch H; Steinhart M; Laggner P; Rappolt M
    Langmuir; 2010 Jan; 26(2):1177-85. PubMed ID: 19681634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sucrose on the structure of a cubic phase formed from a monoolein/water mixture.
    Wang Z; Zheng L; Inoue T
    J Colloid Interface Sci; 2005 Aug; 288(2):638-41. PubMed ID: 15927636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation Energy of the Low-pH-Induced Lamellar to Bicontinuous Cubic Phase Transition in Dioleoylphosphatidylserine/Monoolein.
    Oka T; Saiki T; Alam JM; Yamazaki M
    Langmuir; 2016 Feb; 32(5):1327-37. PubMed ID: 26766583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solubilization of ubiquinone-10 in the lamellar and bicontinuous cubic phases of aqueous monoolein.
    Barauskas J; Razumas V; Nylander T
    Chem Phys Lipids; 1999 Feb; 97(2):167-79. PubMed ID: 10192931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature- and pressure-dependent phase behavior of monoacylglycerides monoolein and monoelaidin.
    Czeslik C; Winter R; Rapp G; Bartels K
    Biophys J; 1995 Apr; 68(4):1423-9. PubMed ID: 7787028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of cyclic AMP and its dibutyryl analogue with model membrane: X-ray diffraction and Raman spectroscopic study using cubic liquid-crystalline phases of monoolein.
    Razumas V; Niaura G; Talaikyte Z; Vagonis A; Nylander T
    Biophys Chem; 2001 Mar; 90(1):75-87. PubMed ID: 11321676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar-induced stabilization of the monoolein Pn3m bicontinuous cubic phase during dehydration.
    Saturni L; Rustichelli F; Di Gregorio GM; Cordone L; Mariani P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):040902. PubMed ID: 11690002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome-c Affects the Monoolein Polymorphism: Consequences for Stability and Loading Efficiency of Drug Delivery Systems.
    Mazzoni S; Barbosa LR; Funari SS; Itri R; Mariani P
    Langmuir; 2016 Jan; 32(3):873-81. PubMed ID: 26710233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated formation of cubic phases in phosphatidylethanolamine dispersions.
    Tenchov B; Koynova R; Rapp G
    Biophys J; 1998 Aug; 75(2):853-66. PubMed ID: 9675186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of monolayers and bilayer foam films from lamellar, inverted hexagonal and cubic lipid phases.
    Jordanova A; Lalchev Z; Tenchov B
    Eur Biophys J; 2003 Feb; 31(8):626-32. PubMed ID: 12582822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal behaviour of cubic phases rich in 1-monooleoyl-rac-glycerol in the ternary system. 1-monooleoyl-rac-glycerol/n-octyl-beta-D-glucoside/water.
    Persson G; Edlund H; Lindblom G
    Eur J Biochem; 2003 Jan; 270(1):56-65. PubMed ID: 12492475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cubic phases in phosphatidylethanolamine dispersions: Formation, stability and phase transitions.
    Tenchov B; Koynova R
    Chem Phys Lipids; 2017 Nov; 208():65-74. PubMed ID: 28982535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embedding DNA in surfactant mesophases: the phase diagram of the ternary system dodecyltrimethylammonium-DNA/monoolein/water in comparison to the DNA-free analogue.
    Bilalov A; Elsing J; Haas E; Schmidt C; Olsson U
    J Colloid Interface Sci; 2013 Mar; 394():360-7. PubMed ID: 23347998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased activation of protein kinase C with cubic phase lipid compared with liposomes.
    Giorgione JR; Huang Z; Epand RM
    Biochemistry; 1998 Feb; 37(8):2384-92. PubMed ID: 9485386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of distearoylphosphatidylglycerol and lysozyme on the structure of the monoolein-water cubic phase: X-ray diffraction and Raman scattering studies.
    Razumas V; Talaikyte Z; Barauskas J; Larsson K; Miezis Y; Nylander T
    Chem Phys Lipids; 1996 Dec; 84(2):123-88. PubMed ID: 9022219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase.
    Cherezov V; Clogston J; Misquitta Y; Abdel-Gawad W; Caffrey M
    Biophys J; 2002 Dec; 83(6):3393-407. PubMed ID: 12496106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAXS investigation of a cubic to a sponge (L3) phase transition in self-assembled lipid nanocarriers.
    Angelov B; Angelova A; Mutafchieva R; Lesieur S; Vainio U; Garamus VM; Jensen GV; Pedersen JS
    Phys Chem Chem Phys; 2011 Feb; 13(8):3073-81. PubMed ID: 21079857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.