BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 28888974)

  • 1. Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release.
    Paukkonen H; Kunnari M; Laurén P; Hakkarainen T; Auvinen VV; Oksanen T; Koivuniemi R; Yliperttula M; Laaksonen T
    Int J Pharm; 2017 Oct; 532(1):269-280. PubMed ID: 28888974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels.
    Valo H; Arola S; Laaksonen P; Torkkeli M; Peltonen L; Linder MB; Serimaa R; Kuga S; Hirvonen J; Laaksonen T
    Eur J Pharm Sci; 2013 Sep; 50(1):69-77. PubMed ID: 23500041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nanofibrillated cellulose hydrogels on adipose tissue extract and hepatocellular carcinoma cell spheroids in freeze-drying.
    Auvinen VV; Merivaara A; Kiiskinen J; Paukkonen H; Laurén P; Hakkarainen T; Koivuniemi R; Sarkanen R; Ylikomi T; Laaksonen T; Yliperttula M
    Cryobiology; 2019 Dec; 91():137-145. PubMed ID: 31533026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug diffusivities in nanofibrillar cellulose hydrogel by combined time-resolved Raman and fluorescence spectroscopy.
    Zini J; Kekkonen J; Kaikkonen VA; Laaksonen T; Keränen P; Talala T; Mäkynen AJ; Yliperttula M; Nissinen I
    J Control Release; 2021 Jun; 334():367-375. PubMed ID: 33930478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entangled and colloidally stable microcrystalline cellulose matrices in controlled drug release.
    Dong Y; Paukkonen H; Fang W; Kontturi E; Laaksonen T; Laaksonen P
    Int J Pharm; 2018 Sep; 548(1):113-119. PubMed ID: 29920312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Far-red light-triggered cargo release from liposomes b ound to a photosensitizer-cellulose nanofiber hydrogel.
    Lem O; Gangurde P; Koivuniemi A; Keskinen A; Efimov A; Durandin N; Laaksonen T
    Carbohydr Polym; 2024 Jul; 336():122134. PubMed ID: 38670761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release.
    Laurén P; Lou YR; Raki M; Urtti A; Bergström K; Yliperttula M
    Eur J Pharm Sci; 2014 Dec; 65():79-88. PubMed ID: 25245005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular Nanofibrillar Thermoreversible Hydrogel for Growth and Release of Cancer Spheroids.
    Li Y; Khuu N; Gevorkian A; Sarjinsky S; Therien-Aubin H; Wang Y; Cho S; Kumacheva E
    Angew Chem Int Ed Engl; 2017 May; 56(22):6083-6087. PubMed ID: 27901307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysaccharide-based hydrogels for the immobilization and controlled release of bovine serum albumin.
    Varnier K; Vieira T; Wolf M; Belfiore LA; Tambourgi EB; Paulino AT
    Int J Biol Macromol; 2018 Dec; 120(Pt A):522-528. PubMed ID: 30165142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofibrillar cellulose films for controlled drug delivery.
    Kolakovic R; Peltonen L; Laukkanen A; Hirvonen J; Laaksonen T
    Eur J Pharm Biopharm; 2012 Oct; 82(2):308-15. PubMed ID: 22750440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loading of bacterial nanocellulose hydrogels with proteins using a high-speed technique.
    Müller A; Wesarg F; Hessler N; Müller FA; Kralisch D; Fischer D
    Carbohydr Polym; 2014 Jun; 106():410-3. PubMed ID: 24721096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a Mesoporous Polydopamine@GO/Cellulose Nanofibril Composite Hydrogel with an Encapsulation Structure for Controllable Drug Release and Toxicity Shielding.
    Liu Y; Fan Q; Huo Y; Liu C; Li B; Li Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57410-57420. PubMed ID: 33289538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carboxymethyl cellulose based hybrid material for sustained release of protein drugs.
    Salama A; El-Sakhawy M; Kamel S
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1647-1652. PubMed ID: 27086298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture.
    Bhattacharya M; Malinen MM; Lauren P; Lou YR; Kuisma SW; Kanninen L; Lille M; Corlu A; GuGuen-Guillouzo C; Ikkala O; Laukkanen A; Urtti A; Yliperttula M
    J Control Release; 2012 Dec; 164(3):291-8. PubMed ID: 22776290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin.
    Hujaya SD; Lorite GS; Vainio SJ; Liimatainen H
    Acta Biomater; 2018 Jul; 75():346-357. PubMed ID: 29885527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release.
    Bhattarai N; Ramay HR; Gunn J; Matsen FA; Zhang M
    J Control Release; 2005 Apr; 103(3):609-24. PubMed ID: 15820408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemocompatibility of Ca
    Basu A; Hong J; Ferraz N
    Macromol Biosci; 2017 Nov; 17(11):. PubMed ID: 28941135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery.
    Kang GD; Cheon SH; Khang G; Song SC
    Eur J Pharm Biopharm; 2006 Jul; 63(3):340-6. PubMed ID: 16527468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural and drug release properties of oven-dried and of slowly or fast frozen freeze-dried MCC-Carbopol pellets.
    Gómez-Carracedo A; Souto C; Martínez-Pacheco R; Concheiro A; Gómez-Amoza JL
    Eur J Pharm Biopharm; 2007 Aug; 67(1):236-45. PubMed ID: 17317125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules.
    Watkins KA; Chen R
    Int J Pharm; 2015 Jan; 478(2):496-503. PubMed ID: 25490181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.