These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28889003)

  • 21. Tactile capture of auditory localization: an event-related potential study.
    Bruns P; Röder B
    Eur J Neurosci; 2010 May; 31(10):1844-57. PubMed ID: 20584189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.
    Higgins NC; McLaughlin SA; Rinne T; Stecker GC
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7602-E7611. PubMed ID: 28827357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust spatial ventriloquism effect and trial-by-trial aftereffect under memory interference.
    Park H; Kayser C
    Sci Rep; 2020 Nov; 10(1):20826. PubMed ID: 33257687
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visually induced plasticity of auditory spatial perception in macaques.
    Woods TM; Recanzone GH
    Curr Biol; 2004 Sep; 14(17):1559-64. PubMed ID: 15341742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity in Human Auditory Cortex Represents Spatial Separation Between Concurrent Sounds.
    Shiell MM; Hausfeld L; Formisano E
    J Neurosci; 2018 May; 38(21):4977-4984. PubMed ID: 29712782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Independent mechanisms for ventriloquism and multisensory integration as revealed by theta-burst stimulation.
    Bertini C; Leo F; Avenanti A; Làdavas E
    Eur J Neurosci; 2010 May; 31(10):1791-9. PubMed ID: 20584183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Processing of location and pattern changes of natural sounds in the human auditory cortex.
    Altmann CF; Bledowski C; Wibral M; Kaiser J
    Neuroimage; 2007 Apr; 35(3):1192-200. PubMed ID: 17320413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reference frame of the ventriloquism aftereffect.
    Kopco N; Lin IF; Shinn-Cunningham BG; Groh JM
    J Neurosci; 2009 Nov; 29(44):13809-14. PubMed ID: 19889992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A neural network model can explain ventriloquism aftereffect and its generalization across sound frequencies.
    Magosso E; Cona F; Ursino M
    Biomed Res Int; 2013; 2013():475427. PubMed ID: 24228250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The aftereffects of ventriloquism: the time course of the visual recalibration of auditory localization.
    Frissen I; Vroomen J; de Gelder B
    Seeing Perceiving; 2012; 25(1):1-14. PubMed ID: 22353565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Ventriloquist Illusion as a Tool to Study Multisensory Processing: An Update.
    Bruns P
    Front Integr Neurosci; 2019; 13():51. PubMed ID: 31572136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opponent Coding of Sound Location (Azimuth) in Planum Temporale is Robust to Sound-Level Variations.
    Derey K; Valente G; de Gelder B; Formisano E
    Cereb Cortex; 2016 Jan; 26(1):450-464. PubMed ID: 26545618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A common cortical substrate activated by horizontal and vertical sound movement in the human brain.
    Pavani F; Macaluso E; Warren JD; Driver J; Griffiths TD
    Curr Biol; 2002 Sep; 12(18):1584-90. PubMed ID: 12372250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid adaptation to auditory-visual spatial disparity.
    Lewald J
    Learn Mem; 2002; 9(5):268-78. PubMed ID: 12359836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-modal representations in early visual and auditory cortices revealed by multi-voxel pattern analysis.
    Gu J; Liu B; Li X; Wang P; Wang B
    Brain Imaging Behav; 2020 Oct; 14(5):1908-1920. PubMed ID: 31183774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of feature-selective attention on auditory pattern and location processing.
    Altmann CF; Henning M; Döring MK; Kaiser J
    Neuroimage; 2008 May; 41(1):69-79. PubMed ID: 18378168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A neural network model of ventriloquism effect and aftereffect.
    Magosso E; Cuppini C; Ursino M
    PLoS One; 2012; 7(8):e42503. PubMed ID: 22880007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial representations of temporal and spectral sound cues in human auditory cortex.
    Herdener M; Esposito F; Scheffler K; Schneider P; Logothetis NK; Uludag K; Kayser C
    Cortex; 2013; 49(10):2822-33. PubMed ID: 23706955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revealing the differences of the representations of sounds from different directions in the human brain using functional connectivity.
    Liang Y; Liu B; Li X; Wang P; Wang B
    Neurosci Lett; 2020 Jan; 718():134746. PubMed ID: 31923522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emotion modulates activity in the 'what' but not 'where' auditory processing pathway.
    Kryklywy JH; Macpherson EA; Greening SG; Mitchell DG
    Neuroimage; 2013 Nov; 82():295-305. PubMed ID: 23711533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.