These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2888926)

  • 1. Probability of quantal transmitter release from nerve terminals: theoretical considerations in the determination of spatial variation.
    Miyamoto MD
    J Theor Biol; 1986 Dec; 123(3):289-304. PubMed ID: 2888926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistics of transmitter release at nerve terminals.
    Bennett MR; Kearns JL
    Prog Neurobiol; 2000 Apr; 60(6):545-606. PubMed ID: 10739089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotransmitter release statistics: moment estimates for inhomogeneous Bernoulli trials.
    Perkel DH; Feldman MW
    J Math Biol; 1979 Jan; 7(1):31-40. PubMed ID: 34005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time detection of mitochondrial inhibition at frog motor nerve terminals using increases in the spatial variance in probability of transmitter release.
    Provan SD; Miyamoto MD
    Neurosci Lett; 1995 Feb; 185(3):187-90. PubMed ID: 7753488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hypertonicity on augmentation and potentiation and on corresponding quantal parameters of transmitter release.
    Cheng H; Miyamoto MD
    J Neurophysiol; 1999 Mar; 81(3):1428-31. PubMed ID: 10085369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining principal component and spectral analyses with the method of moments in studies of quantal transmission.
    Dityatev AE; Altinbaev RSh; Astrelin AV; Voronin LL
    J Neurosci Methods; 2003 Dec; 130(2):173-99. PubMed ID: 14667545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre-Purkinje cell synapses.
    Silver RA; Momiyama A; Cull-Candy SG
    J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):881-902. PubMed ID: 9660900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The binomial model in fluctuation analysis of quantal neurotransmitter release.
    Quastel DM
    Biophys J; 1997 Feb; 72(2 Pt 1):728-53. PubMed ID: 9017200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inositol trisphosphate and cyclic adenosine diphosphate-ribose increase quantal transmitter release at frog motor nerve terminals: possible involvement of smooth endoplasmic reticulum.
    Brailoiu E; Miyamoto MD
    Neuroscience; 2000; 95(4):927-31. PubMed ID: 10682700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evoked neurotransmitter release: statistical effects of nonuniformity and nonstationarity.
    Brown TH; Perkel DH; Feldman MW
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2913-7. PubMed ID: 8781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic secretion of quanta at somatic motor-nerve terminals: the fusion-pore model, quantal detection and autoinhibition.
    Thomson PC; Lavidis NA; Robinson J; Bennett MR
    Philos Trans R Soc Lond B Biol Sci; 1995 Aug; 349(1328):197-214. PubMed ID: 8668726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double barrier quantal model of neurotransmitter release.
    Melkonian DS
    Neuroreport; 1991 Nov; 2(11):719-22. PubMed ID: 1687358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limits of quantal analysis reliability: quantal and unimodal constraints and setting of confidence intervals for quantal size.
    Dityatev AE; Clamann HP
    J Neurosci Methods; 1993 Oct; 50(1):67-82. PubMed ID: 7903994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unbiased estimates of quantal release parameters and spatial variation in the probability of neurosecretion.
    Provan SD; Miyamoto MD
    Am J Physiol; 1993 Apr; 264(4 Pt 1):C1051-60. PubMed ID: 8476011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of opiates on the terminal nerve impulse and quantal secretion from visualized amphibian nerve terminals.
    Lavidis NA
    Br J Pharmacol; 1995 Jun; 115(3):441-50. PubMed ID: 7582455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of quantal transmitter release caused by gadolinium ions at the frog neuromuscular junction.
    Molgó J; del Pozo E; Baños JE; Angaut-Petit D
    Br J Pharmacol; 1991 Sep; 104(1):133-8. PubMed ID: 1686201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimates of probability of transmitter release at the mammalian neuromuscular junction.
    Christensen BN; Martin AR
    J Physiol; 1970 Nov; 210(4):933-45. PubMed ID: 4395959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of variance in mini amplitude on stimulus-evoked release: a comparison of two models.
    Frerking M; Wilson M
    Biophys J; 1996 May; 70(5):2078-91. PubMed ID: 9172732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effect of intraterminal lithium on asynchronous release of excitatory quanta induced by veratridine in nerve-muscle synapses of crayfish.
    Finger W; Martin C
    Neurosci Lett; 1987 Dec; 83(1-2):113-7. PubMed ID: 2894620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration of an autocorrelation-based method for determining amplitude histogram reliability and quantal size.
    Stratford KJ; Jack JJ; Larkman AU
    J Physiol; 1997 Dec; 505 ( Pt 2)(Pt 2):425-42. PubMed ID: 9423184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.