These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2888926)

  • 21. Maximum likelihood estimation of non-uniform transmitter release probabilities at the crayfish neuromuscular junction.
    Smith BR; Wojtowicz JM; Atwood HL
    J Theor Biol; 1991 Jun; 150(4):457-72. PubMed ID: 1682530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantal analysis of EPSCs recorded from small numbers of synapses in hippocampal cultures.
    Bekkers JM; Stevens CF
    J Neurophysiol; 1995 Mar; 73(3):1145-56. PubMed ID: 7608761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binomial analysis of quantal transmitter release at glycerol treated frog neuromuscular junctions.
    Miyamoto MD
    J Physiol; 1975 Aug; 250(1):121-42. PubMed ID: 240928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.
    Cooper RL; Winslow JL; Govind CK; Atwood HL
    J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrastructure of botulinum type-A poisoned frog motor nerve terminals after enhanced quantal transmitter release caused by carbonyl cyanide m-chlorophenylhydrazone.
    Pécot-Dechavassine M; Molgo J; Thesleff S
    Neurosci Lett; 1991 Sep; 130(1):5-8. PubMed ID: 1684235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantal parameters of "minimal" excitatory postsynaptic potentials in guinea pig hippocampal slices: binomial approach.
    Voronin LL; Kuhnt U; Hess G; Gusev AG; Roschin V
    Exp Brain Res; 1992; 89(2):248-64. PubMed ID: 1320572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in binomial parameters of quantal release at crustacean motor axon terminals during presynaptic inhibition.
    Atwood HL; Tse FW
    J Physiol; 1988 Aug; 402():177-93. PubMed ID: 2907048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel approach to a quantitative treatment of the quantal transmitter release at the frog neuromuscular junction.
    Melkonian DS; Kostopoulos GK
    Neurosci Lett; 1996 May; 209(1):13-6. PubMed ID: 8734898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.
    Saveliev A; Khuzakhmetova V; Samigullin D; Skorinkin A; Kovyazina I; Nikolsky E; Bukharaeva E
    J Comput Neurosci; 2015 Oct; 39(2):119-29. PubMed ID: 26129670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effects of various secretagogues on quantal transmitter release from mouse motor nerve terminals treated with botulinum A and tetanus toxin.
    Dreyer F; Rosenberg F; Becker C; Bigalke H; Penner R
    Naunyn Schmiedebergs Arch Pharmacol; 1987 Jan; 335(1):1-7. PubMed ID: 2883583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistics of neuromuscular transmitter release in young and old mouse muscle.
    Kelly SS; Robbins N
    J Physiol; 1987 Apr; 385():507-16. PubMed ID: 2888882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of hypertonic solutions on quantal transmitter release at the crayfish neuromuscular junction.
    Niles WD; Smith DO
    J Physiol; 1982 Aug; 329():185-202. PubMed ID: 6128408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the release of transmitter at normal, myasthenia gravis and myasthenic syndrome affected human end-plates.
    Cull-Candy SG; Miledi R; Trautmann A; Uchitel OD
    J Physiol; 1980 Feb; 299():621-38. PubMed ID: 6103954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimates of quantal content during 'chemical potentiation' of transmitter release.
    Katz B; Miledi R
    Proc R Soc Lond B Biol Sci; 1979 Aug; 205(1160):369-78. PubMed ID: 41252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An empirical test for the reliability of quantal analysis based on Pascal statistics.
    Kamiya H; Sawada S; Yamamoto C
    J Neurosci Methods; 1992 Apr; 42(1-2):19-26. PubMed ID: 1405731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facilitatory effects of 4-aminopyridine on strontium-mediated evoked and delayed transmitter release from motor nerve terminals.
    Molgó J; Lemeignan M; Guerrero S
    Eur J Pharmacol; 1982 Oct; 84(1-2):1-7. PubMed ID: 6128233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of calcium and magnesium on statistical release parameters at the crayfish neuromuscular junction.
    Wernig A
    J Physiol; 1972 Nov; 226(3):761-8. PubMed ID: 4404687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple types of calcium channels mediate transmitter release during functional recovery of botulinum toxin type A-poisoned mouse motor nerve terminals.
    Santafé MM; Urbano FJ; Lanuza MA; Uchitel OD
    Neuroscience; 2000; 95(1):227-34. PubMed ID: 10619479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sr2+ and quantal events at excitatory synapses between mouse hippocampal neurons in culture.
    Abdul-Ghani MA; Valiante TA; Pennefather PS
    J Physiol; 1996 Aug; 495 ( Pt 1)(Pt 1):113-25. PubMed ID: 8866356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The calcium dependence of spontaneous and evoked quantal release at the frog neuromuscular junction.
    Barton SB; Cohen IS; van der Kloot W
    J Physiol; 1983 Apr; 337():735-51. PubMed ID: 6603514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.