BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28889346)

  • 21. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms.
    Priya AK; Gnanasekaran L; Dutta K; Rajendran S; Balakrishnan D; Soto-Moscoso M
    Chemosphere; 2022 Nov; 307(Pt 4):135957. PubMed ID: 35985378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review with recent advancements on bioremediation-based abolition of heavy metals.
    Gaur N; Flora G; Yadav M; Tiwari A
    Environ Sci Process Impacts; 2014 Feb; 16(2):180-93. PubMed ID: 24362580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring biosynthesis strategies to boost the yield of exopolysaccharide-protein blend from Bacillus arachidis SY8(T), an isolated native strain, as a potent adsorbent for heavy metals removal.
    Hosseini SP; Mousavi SM; Jafari A
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132634. PubMed ID: 38797297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unique natural exopolysaccharides for biomimetic protective effect against urban pollution.
    Borel M; Lamarque E; Loing E
    J Cosmet Sci; 2017; 68(1):126-132. PubMed ID: 29465393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being.
    Sharma P; Dutta D; Udayan A; Nadda AK; Lam SS; Kumar S
    Environ Pollut; 2022 Jul; 305():119248. PubMed ID: 35395353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosorbents for heavy metals removal and their future.
    Wang J; Chen C
    Biotechnol Adv; 2009; 27(2):195-226. PubMed ID: 19103274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and identification of an exopolysaccharide-producing lactic acid bacterium strain from Chinese Paocai and biosorption of Pb(II) by its exopolysaccharide.
    Feng M; Chen X; Li C; Nurgul R; Dong M
    J Food Sci; 2012 Jun; 77(6):T111-7. PubMed ID: 22671533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry.
    Yan P; Xia JS; Chen YP; Liu ZP; Guo JS; Shen Y; Zhang CC; Wang J
    Bioresour Technol; 2017 May; 232():354-363. PubMed ID: 28249189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial application in remediation of heavy metals: an overview.
    Choudhury S; Chatterjee A
    Arch Microbiol; 2022 Apr; 204(5):268. PubMed ID: 35438381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.
    Chaturvedi AD; Pal D; Penta S; Kumar A
    World J Microbiol Biotechnol; 2015 Oct; 31(10):1595-603. PubMed ID: 26250544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heavy metal contamination and distribution in the urban environment of Guangzhou, SE China.
    Duzgoren-Aydin NS; Wong CS; Aydin A; Song Z; You M; Li XD
    Environ Geochem Health; 2006 Aug; 28(4):375-91. PubMed ID: 16752128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process.
    De Philippis R; Colica G; Micheletti E
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):697-708. PubMed ID: 21983706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging role of microalgae in heavy metal bioremediation.
    Manikandan A; Suresh Babu P; Shyamalagowri S; Kamaraj M; Muthukumaran P; Aravind J
    J Basic Microbiol; 2022 Mar; 62(3-4):330-347. PubMed ID: 34724223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface Modification of Naturally Available Biomass for Enhancement of Heavy Metal Removal Efficiency, Upscaling Prospects, and Management Aspects of Spent Biosorbents: A Review.
    Ramrakhiani L; Ghosh S; Majumdar S
    Appl Biochem Biotechnol; 2016 Sep; 180(1):41-78. PubMed ID: 27097928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment - A review.
    Mathivanan K; Chandirika JU; Vinothkanna A; Yin H; Liu X; Meng D
    Ecotoxicol Environ Saf; 2021 Dec; 226():112863. PubMed ID: 34619478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Search of heavy metals biosorbents among yeasts of different taxonomic groups].
    Lozovaia OG; Kasatkina TP; PodgorskiÄ­ VS
    Mikrobiol Z; 2004; 66(2):92-101. PubMed ID: 15208860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.
    Mikes J; Siglova M; Cejkova A; Masak J; Jirku V
    Water Sci Technol; 2005; 52(10-11):151-6. PubMed ID: 16459787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles.
    Sathiyanarayanan G; Dineshkumar K; Yang YH
    Crit Rev Microbiol; 2017 Nov; 43(6):731-752. PubMed ID: 28440091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.