BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

833 related articles for article (PubMed ID: 28890325)

  • 1. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms.
    He L; Wei Q; Liu J; Yi M; Liu Y; Liu H; Sun L; Peng Y; Liu F; Venkatachalam MA; Dong Z
    Kidney Int; 2017 Nov; 92(5):1071-1083. PubMed ID: 28890325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial dysfunction and the AKI-to-CKD transition.
    Jiang M; Bai M; Lei J; Xie Y; Xu S; Jia Z; Zhang A
    Am J Physiol Renal Physiol; 2020 Dec; 319(6):F1105-F1116. PubMed ID: 33073587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting the transition of acute kidney injury to chronic kidney disease: Potential mechanisms and future perspectives.
    Ogbadu J; Singh G; Aggarwal D
    Eur J Pharmacol; 2019 Dec; 865():172711. PubMed ID: 31589870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation.
    Li C; Xie N; Li Y; Liu C; Hou FF; Wang J
    Free Radic Biol Med; 2019 Jan; 130():512-527. PubMed ID: 30447351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming Growth Factor-β in the Acute Kidney Injury to Chronic Kidney Disease Transition.
    Gewin LS
    Nephron; 2019; 143(3):154-157. PubMed ID: 31039574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tubulovascular protection from protease-activated receptor-1 depletion during AKI-to-CKD transition.
    Lok SWY; Yiu WH; Zou Y; Xue R; Li H; Ma J; Chen J; Chan LYY; Lai KN; Tang SCW
    Nephrol Dial Transplant; 2023 Sep; 38(10):2232-2247. PubMed ID: 36914214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vegfa promoter gene hypermethylation at HIF1α binding site is an early contributor to CKD progression after renal ischemia.
    Sánchez-Navarro A; Pérez-Villalva R; Murillo-de-Ozores AR; Martínez-Rojas MÁ; Rodríguez-Aguilera JR; González N; Castañeda-Bueno M; Gamba G; Recillas-Targa F; Bobadilla NA
    Sci Rep; 2021 Apr; 11(1):8769. PubMed ID: 33888767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential targeted therapy and diagnosis based on novel insight into growth factors, receptors, and downstream effectors in acute kidney injury and acute kidney injury-chronic kidney disease progression.
    Gao L; Zhong X; Jin J; Li J; Meng XM
    Signal Transduct Target Ther; 2020 Feb; 5(1):9. PubMed ID: 32296020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitophagy in Acute Kidney Injury and Kidney Repair.
    Wang Y; Cai J; Tang C; Dong Z
    Cells; 2020 Feb; 9(2):. PubMed ID: 32024113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of endoplasmic reticulum stress and autophagy in the transition from acute kidney injury to chronic kidney disease.
    Habshi T; Shelke V; Kale A; Anders HJ; Gaikwad AB
    J Cell Physiol; 2023 Jan; 238(1):82-93. PubMed ID: 36409755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed spironolactone administration prevents the transition from acute kidney injury to chronic kidney disease through improving renal inflammation.
    Barrera-Chimal J; Rocha L; Amador-Martínez I; Pérez-Villalva R; González R; Cortés-González C; Uribe N; Ramírez V; Berman N; Gamba G; Bobadilla NA
    Nephrol Dial Transplant; 2019 May; 34(5):794-801. PubMed ID: 30107561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular trafficking of tubular MDM2 implicates in acute kidney injury to chronic kidney disease transition during multiple low-dose cisplatin exposure.
    Su H; Ye C; Lei CT; Tang H; Zeng JY; Yi F; Zhang C
    FASEB J; 2020 Jan; 34(1):1620-1636. PubMed ID: 31914692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of SIK1 in the transition of acute kidney injury into chronic kidney disease.
    Hu J; Qiao J; Yu Q; Liu B; Zhen J; Liu Y; Ma Q; Li Y; Wang Q; Wang C; Lv Z
    J Transl Med; 2021 Feb; 19(1):69. PubMed ID: 33588892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease.
    Shu S; Zhu J; Liu Z; Tang C; Cai J; Dong Z
    EBioMedicine; 2018 Nov; 37():269-280. PubMed ID: 30314894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct patterns of transcriptional and epigenetic alterations characterize acute and chronic kidney injury.
    Sharifian R; Okamura DM; Denisenko O; Zager RA; Johnson A; Gharib SA; Bomsztyk K
    Sci Rep; 2018 Dec; 8(1):17870. PubMed ID: 30552397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathophysiological Role of Organelle Stress/Crosstalk in AKI-to-CKD Transition.
    Maekawa H; Inagi R
    Semin Nephrol; 2019 Nov; 39(6):581-588. PubMed ID: 31836040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases.
    Aranda-Rivera AK; Cruz-Gregorio A; Aparicio-Trejo OE; Pedraza-Chaverri J
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of NAD+ boosting on kidney ischemia-reperfusion injury.
    Morevati M; Egstrand S; Nordholm A; Mace ML; Andersen CB; Salmani R; Olgaard K; Lewin E
    PLoS One; 2021; 16(6):e0252554. PubMed ID: 34061900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inflammaging and Complement System: A Link Between Acute Kidney Injury and Chronic Graft Damage.
    Franzin R; Stasi A; Fiorentino M; Stallone G; Cantaluppi V; Gesualdo L; Castellano G
    Front Immunol; 2020; 11():734. PubMed ID: 32457738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential.
    Zhang X; Agborbesong E; Li X
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.