These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

943 related articles for article (PubMed ID: 28890325)

  • 21. Subcellular trafficking of tubular MDM2 implicates in acute kidney injury to chronic kidney disease transition during multiple low-dose cisplatin exposure.
    Su H; Ye C; Lei CT; Tang H; Zeng JY; Yi F; Zhang C
    FASEB J; 2020 Jan; 34(1):1620-1636. PubMed ID: 31914692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative stress and autophagy: crucial modulators of kidney injury.
    Sureshbabu A; Ryter SW; Choi ME
    Redox Biol; 2015; 4():208-14. PubMed ID: 25613291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of SIK1 in the transition of acute kidney injury into chronic kidney disease.
    Hu J; Qiao J; Yu Q; Liu B; Zhen J; Liu Y; Ma Q; Li Y; Wang Q; Wang C; Lv Z
    J Transl Med; 2021 Feb; 19(1):69. PubMed ID: 33588892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rodent models of AKI-CKD transition.
    Fu Y; Tang C; Cai J; Chen G; Zhang D; Dong Z
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F1098-F1106. PubMed ID: 29949392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease.
    Shu S; Zhu J; Liu Z; Tang C; Cai J; Dong Z
    EBioMedicine; 2018 Nov; 37():269-280. PubMed ID: 30314894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct patterns of transcriptional and epigenetic alterations characterize acute and chronic kidney injury.
    Sharifian R; Okamura DM; Denisenko O; Zager RA; Johnson A; Gharib SA; Bomsztyk K
    Sci Rep; 2018 Dec; 8(1):17870. PubMed ID: 30552397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pathophysiological Role of Organelle Stress/Crosstalk in AKI-to-CKD Transition.
    Maekawa H; Inagi R
    Semin Nephrol; 2019 Nov; 39(6):581-588. PubMed ID: 31836040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome.
    Chawla LS; Kimmel PL
    Kidney Int; 2012 Sep; 82(5):516-24. PubMed ID: 22673882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acute kidney injury to chronic kidney disease transition: insufficient cellular stress response.
    Strausser SA; Nakano D; Souma T
    Curr Opin Nephrol Hypertens; 2018 Jul; 27(4):314-322. PubMed ID: 29702491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases.
    Aranda-Rivera AK; Cruz-Gregorio A; Aparicio-Trejo OE; Pedraza-Chaverri J
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of NAD+ boosting on kidney ischemia-reperfusion injury.
    Morevati M; Egstrand S; Nordholm A; Mace ML; Andersen CB; Salmani R; Olgaard K; Lewin E
    PLoS One; 2021; 16(6):e0252554. PubMed ID: 34061900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inflammaging and Complement System: A Link Between Acute Kidney Injury and Chronic Graft Damage.
    Franzin R; Stasi A; Fiorentino M; Stallone G; Cantaluppi V; Gesualdo L; Castellano G
    Front Immunol; 2020; 11():734. PubMed ID: 32457738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression.
    Tampe B; Steinle U; Tampe D; Carstens JL; Korsten P; Zeisberg EM; Müller GA; Kalluri R; Zeisberg M
    Kidney Int; 2017 Jan; 91(1):157-176. PubMed ID: 27692563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fibrotic Changes Mediating Acute Kidney Injury to Chronic Kidney Disease Transition.
    Ó hAinmhire E; Humphreys BD
    Nephron; 2017; 137(4):264-267. PubMed ID: 28595180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential.
    Zhang X; Agborbesong E; Li X
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acute Kidney Injury.
    Zuk A; Bonventre JV
    Annu Rev Med; 2016; 67():293-307. PubMed ID: 26768243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Impact of Preexisting Chronic Kidney Disease on the Severity and Recovery of Acute Kidney Injury.
    Lim SY; Ko YS; Lee HY; Yang JH; Kim MG; Jo SK; Cho WY
    Nephron; 2018; 139(3):254-268. PubMed ID: 29649832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-coding RNAs in kidney injury and repair.
    Liu Z; Wang Y; Shu S; Cai J; Tang C; Dong Z
    Am J Physiol Cell Physiol; 2019 Aug; 317(2):C177-C188. PubMed ID: 30969781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial Signaling, the Mechanisms of AKI-to-CKD Transition and Potential Treatment Targets.
    Chang LY; Chao YL; Chiu CC; Chen PL; Lin HY
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FoxO3 activation in hypoxic tubules prevents chronic kidney disease.
    Li L; Kang H; Zhang Q; D'Agati VD; Al-Awqati Q; Lin F
    J Clin Invest; 2019 Mar; 129(6):2374-2389. PubMed ID: 30912765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.