BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28890961)

  • 1. Two-dimensional pattern formation in ionic liquids confined between graphene walls.
    Montes-Campos H; Otero-Mato JM; Méndez-Morales T; Cabeza O; Gallego LJ; Ciach A; Varela LM
    Phys Chem Chem Phys; 2017 Sep; 19(36):24505-24512. PubMed ID: 28890961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D structure of the electric double layer of ionic liquid-alcohol mixtures at the electrochemical interface.
    Otero-Mato JM; Montes-Campos H; Cabeza O; Diddens D; Ciach A; Gallego LJ; Varela LM
    Phys Chem Chem Phys; 2018 Dec; 20(48):30412-30427. PubMed ID: 30500015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of the structure of mixtures of protic ionic liquids and monovalent and divalent salts at the electrochemical interface.
    Gómez-González V; Docampo-Álvarez B; Otero-Mato JM; Cabeza O; Gallego LJ; Varela LM
    Phys Chem Chem Phys; 2018 May; 20(18):12767-12776. PubMed ID: 29697731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-layer in ionic liquids: paradigm change?
    Kornyshev AA
    J Phys Chem B; 2007 May; 111(20):5545-57. PubMed ID: 17469864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.
    Vatamanu J; Vatamanu M; Bedrov D
    ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of the structure and interfacial free energy barriers of mixtures of ionic liquids and divalent salts near a graphene wall.
    Gómez-González V; Docampo-Álvarez B; Méndez-Morales T; Cabeza O; Ivaništšev VB; Fedorov MV; Gallego LJ; Varela LM
    Phys Chem Chem Phys; 2016 Dec; 19(1):846-853. PubMed ID: 27934972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of the structure of the graphene-ionic liquid/alkali salt mixtures interface.
    Méndez-Morales T; Carrete J; Pérez-Rodríguez M; Cabeza Ó; Gallego LJ; Lynden-Bell RM; Varela LM
    Phys Chem Chem Phys; 2014 Jul; 16(26):13271-8. PubMed ID: 24871696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.
    Ivaništšev V; Méndez-Morales T; Lynden-Bell RM; Cabeza O; Gallego LJ; Varela LM; Fedorov MV
    Phys Chem Chem Phys; 2016 Jan; 18(2):1302-10. PubMed ID: 26661060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvation of Al
    Gómez-González V; Docampo-Álvarez B; Montes-Campos H; Otero JC; Lago EL; Cabeza O; Gallego LJ; Varela LM
    Phys Chem Chem Phys; 2018 Jul; 20(28):19071-19081. PubMed ID: 29972160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of surface nanostructure-induced innermost ion structuring on capacitance of carbon/ionic liquid double layers.
    Tu YJ; Peng ST
    Phys Chem Chem Phys; 2024 Feb; 26(7):5932-5946. PubMed ID: 38299635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular aggregation of inorganic molecules at Au(111) electrodes under a strong ionic atmosphere.
    Fu YC; Su YZ; Wu DY; Yan JW; Xie ZX; Mao BW
    J Am Chem Soc; 2009 Oct; 131(41):14728-37. PubMed ID: 19778042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water in ionic liquids at electrified interfaces: the anatomy of electrosorption.
    Feng G; Jiang X; Qiao R; Kornyshev AA
    ACS Nano; 2014 Nov; 8(11):11685-94. PubMed ID: 25341189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study.
    Li S; Feng G; Cummings PT
    J Phys Condens Matter; 2014 Jul; 26(28):284106. PubMed ID: 24920318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Transitions at Ionic Liquid Interfaces.
    Rotenberg B; Salanne M
    J Phys Chem Lett; 2015 Dec; 6(24):4978-85. PubMed ID: 26722704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the Ionic Liquid Graphene Electric Double Layer in Supercapacitors Using Constant Potential Simulations.
    Demir B; Searles DJ
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33139670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.
    Haskins JB; Lawson JW
    J Chem Phys; 2016 May; 144(18):184707. PubMed ID: 27179500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncovalent Pi-Pi Stacking at the Carbon-Electrolyte Interface: Controlling the Voltage Window of Electrochemical Supercapacitors.
    Li M; Westover AS; Carter R; Oakes L; Muralidharan N; Boire TC; Sung HJ; Pint CL
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19558-66. PubMed ID: 27380273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of pyrrolidinium and imidazolium ionic liquids at graphene interfaces.
    Begić S; Jónsson E; Chen F; Forsyth M
    Phys Chem Chem Phys; 2017 Nov; 19(44):30010-30020. PubMed ID: 29094121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.
    Mousavi MP; Wilson BE; Kashefolgheta S; Anderson EL; He S; Bühlmann P; Stein A
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3396-406. PubMed ID: 26771378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.