These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
725 related articles for article (PubMed ID: 28891041)
1. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041 [TBL] [Abstract][Full Text] [Related]
2. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Hasunuma T; Ismail KSK; Nambu Y; Kondo A J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856 [TBL] [Abstract][Full Text] [Related]
3. Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass. Sato TK; Liu T; Parreiras LS; Williams DL; Wohlbach DJ; Bice BD; Ong IM; Breuer RJ; Qin L; Busalacchi D; Deshpande S; Daum C; Gasch AP; Hodge DB Appl Environ Microbiol; 2014 Jan; 80(2):540-54. PubMed ID: 24212571 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Romaní A; Pereira F; Johansson B; Domingues L Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512 [TBL] [Abstract][Full Text] [Related]
5. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. Diao L; Liu Y; Qian F; Yang J; Jiang Y; Yang S BMC Biotechnol; 2013 Dec; 13():110. PubMed ID: 24354503 [TBL] [Abstract][Full Text] [Related]
6. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492 [TBL] [Abstract][Full Text] [Related]
7. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis. Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428 [TBL] [Abstract][Full Text] [Related]
8. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Fujitomi K; Sanda T; Hasunuma T; Kondo A Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292 [TBL] [Abstract][Full Text] [Related]
9. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related]
10. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Ko JK; Um Y; Woo HM; Kim KH; Lee SM Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396 [TBL] [Abstract][Full Text] [Related]
11. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
12. Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism. Jayakody LN; Turner TL; Yun EJ; Kong II; Liu JJ; Jin YS Appl Microbiol Biotechnol; 2018 Sep; 102(18):8121-8133. PubMed ID: 30027490 [TBL] [Abstract][Full Text] [Related]
13. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
14. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae. Sakihama Y; Hasunuma T; Kondo A J Biosci Bioeng; 2015 Mar; 119(3):297-302. PubMed ID: 25282639 [TBL] [Abstract][Full Text] [Related]
15. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. Parreiras LS; Breuer RJ; Avanasi Narasimhan R; Higbee AJ; La Reau A; Tremaine M; Qin L; Willis LB; Bice BD; Bonfert BL; Pinhancos RC; Balloon AJ; Uppugundla N; Liu T; Li C; Tanjore D; Ong IM; Li H; Pohlmann EL; Serate J; Withers ST; Simmons BA; Hodge DB; Westphall MS; Coon JJ; Dale BE; Balan V; Keating DH; Zhang Y; Landick R; Gasch AP; Sato TK PLoS One; 2014; 9(9):e107499. PubMed ID: 25222864 [TBL] [Abstract][Full Text] [Related]
16. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
17. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC; Turner TL; Jin YS J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [TBL] [Abstract][Full Text] [Related]
18. Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain. Huang S; Liu T; Peng B; Geng A Bioprocess Biosyst Eng; 2019 May; 42(5):883-896. PubMed ID: 30820665 [TBL] [Abstract][Full Text] [Related]
19. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Matsushika A; Goshima T; Hoshino T Microb Cell Fact; 2014 Jan; 13():16. PubMed ID: 24467867 [TBL] [Abstract][Full Text] [Related]
20. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37. Li YC; Mitsumasu K; Gou ZX; Gou M; Tang YQ; Li GY; Wu XL; Akamatsu T; Taguchi H; Kida K Appl Microbiol Biotechnol; 2016 Feb; 100(3):1531-1542. PubMed ID: 26603762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]