These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
813 related articles for article (PubMed ID: 28891389)
1. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity. Wei Y; Zhang J; Feng X; Liu D J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389 [TBL] [Abstract][Full Text] [Related]
2. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Jin X; Yuan J; Shen J Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441 [TBL] [Abstract][Full Text] [Related]
3. Multifunctional copolymer coating of polyethylene glycol, glycidyl methacrylate, and REDV to enhance the selectivity of endothelial cells. Wei Y; Zhang J; Li H; Zhang L; Bi H J Biomater Sci Polym Ed; 2015; 26(18):1357-71. PubMed ID: 26381476 [TBL] [Abstract][Full Text] [Related]
4. [Construction of controllable polyethylene glycol bioactive coating with hemocompatibility from the surface of modified glass substrate]. Wei Y; Zhang J; Zhang Y; Feng X; Yang X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):260-266. PubMed ID: 31016943 [TBL] [Abstract][Full Text] [Related]
5. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility. Liu P; Chen Q; Yuan B; Chen M; Wu S; Lin S; Shen J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3865-74. PubMed ID: 23910289 [TBL] [Abstract][Full Text] [Related]
6. Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP. Xiang T; Zhang LS; Wang R; Xia Y; Su BH; Zhao CS J Colloid Interface Sci; 2014 Oct; 432():47-56. PubMed ID: 25072519 [TBL] [Abstract][Full Text] [Related]
7. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Wang M; Yuan J; Huang X; Cai X; Li L; Shen J Colloids Surf B Biointerfaces; 2013 Mar; 103():52-8. PubMed ID: 23201719 [TBL] [Abstract][Full Text] [Related]
8. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling. Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034 [TBL] [Abstract][Full Text] [Related]
9. Zwitterionic polycarboxybetaine coating functionalized with REDV peptide to improve selectivity for endothelial cells. Ji Y; Wei Y; Liu X; Wang J; Ren K; Ji J J Biomed Mater Res A; 2012 Jun; 100(6):1387-97. PubMed ID: 22374807 [TBL] [Abstract][Full Text] [Related]
10. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Jiang H; Wang XB; Li CY; Li JS; Xu FJ; Mao C; Yang WT; Shen J Langmuir; 2011 Sep; 27(18):11575-81. PubMed ID: 21851101 [TBL] [Abstract][Full Text] [Related]
11. Aqueous-based immobilization of initiator and surface-initiated ATRP to construct hemocompatible surface of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer. Hou J; Shi Q; Stagnaro P; Ye W; Jin J; Conzatti L; Yin J Colloids Surf B Biointerfaces; 2013 Nov; 111():333-41. PubMed ID: 23838201 [TBL] [Abstract][Full Text] [Related]
12. Surface tailoring for selective endothelialization and platelet inhibition via a combination of SI-ATRP and click chemistry using Cys-Ala-Gly-peptide. Khan M; Yang J; Shi C; Lv J; Feng Y; Zhang W Acta Biomater; 2015 Jul; 20():69-81. PubMed ID: 25839123 [TBL] [Abstract][Full Text] [Related]
13. A novel approach for UV-patterning with binary polymer brushes. Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Saruwatari Y; Matsuoka K Colloids Surf B Biointerfaces; 2018 Jan; 161():42-50. PubMed ID: 29040833 [TBL] [Abstract][Full Text] [Related]
14. Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling. Ye Q; He B; Zhang Y; Zhang J; Liu S; Zhou F ACS Appl Mater Interfaces; 2019 Oct; 11(42):39171-39178. PubMed ID: 31559815 [TBL] [Abstract][Full Text] [Related]
15. Hemocompatibility of pseudozwitterionic polymer brushes with a systematic well-defined charge-bias control. Jhong JF; Sin MC; Kung HH; Chinnathambi A; Alharbi SA; Chang Y J Biomater Sci Polym Ed; 2014; 25(14-15):1558-72. PubMed ID: 24894872 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of nonbiofouling metal stent and in vitro studies on its hemocompatibility. Wang X; Miao J; Zhao H; Mao C; Chen X; Shen J J Biomater Appl; 2014 Jul; 29(1):14-25. PubMed ID: 24262304 [TBL] [Abstract][Full Text] [Related]
17. Covalent immobilization of antibody fragments on well-defined polymer brushes via site-directed method. Iwata R; Satoh R; Iwasaki Y; Akiyoshi K Colloids Surf B Biointerfaces; 2008 Apr; 62(2):288-98. PubMed ID: 18055186 [TBL] [Abstract][Full Text] [Related]
18. Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications. Sivkova R; Táborská J; Reparaz A; de Los Santos Pereira A; Kotelnikov I; Proks V; Kučka J; Svoboda J; Riedel T; Pop-Georgievski O Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32947982 [TBL] [Abstract][Full Text] [Related]
19. Effects of Grafting Density and Film Thickness on the Adhesion of Staphylococcus epidermidis to Poly(2-hydroxy ethyl methacrylate) and Poly(poly(ethylene glycol)methacrylate) Brushes. Ibanescu SA; Nowakowska J; Khanna N; Landmann R; Klok HA Macromol Biosci; 2016 May; 16(5):676-85. PubMed ID: 26757483 [TBL] [Abstract][Full Text] [Related]
20. Controlled grafting of well-defined epoxide polymers on hydrogen-terminated silicon substrates by surface-initiated ATRP at ambient temperature. Yu WH; Kang ET; Neoh KG Langmuir; 2004 Sep; 20(19):8294-300. PubMed ID: 15350105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]