These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
813 related articles for article (PubMed ID: 28891389)
21. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity. Li W; Liu Q; Liu L J Biomater Sci Polym Ed; 2014; 25(14-15):1730-42. PubMed ID: 25136859 [TBL] [Abstract][Full Text] [Related]
22. Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials. Lin X; Fukazawa K; Ishihara K ACS Appl Mater Interfaces; 2015 Aug; 7(31):17489-98. PubMed ID: 26202385 [TBL] [Abstract][Full Text] [Related]
23. Polymer brushes interfacing blood as a route toward high performance blood contacting devices. Surman F; Riedel T; Bruns M; Kostina NY; Sedláková Z; Rodriguez-Emmenegger C Macromol Biosci; 2015 May; 15(5):636-46. PubMed ID: 25644402 [TBL] [Abstract][Full Text] [Related]
24. Concentrated polymer brush-modified silica particle coating confers biofouling-resistance on modified materials. Yoshikawa C; Qiu J; Shimizu Y; Huang CF; Gelling OJ; van den Bosch E Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):272-277. PubMed ID: 27770891 [TBL] [Abstract][Full Text] [Related]
25. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R; Klok HA Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007 [TBL] [Abstract][Full Text] [Related]
26. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. Guo S; Jańczewski D; Zhu X; Quintana R; He T; Neoh KG J Colloid Interface Sci; 2015 Aug; 452():43-53. PubMed ID: 25913777 [TBL] [Abstract][Full Text] [Related]
27. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171 [TBL] [Abstract][Full Text] [Related]
28. Enhancing antifouling property of PVA membrane by grafting zwitterionic polymer via SI-ATRP method. Cui M; Shen M; Zhou L; Luo Z; Zhou H; Yang X; Hu H J Biomater Sci Polym Ed; 2020 Oct; 31(14):1852-1868. PubMed ID: 32532173 [TBL] [Abstract][Full Text] [Related]
29. Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterionic cysteine. Li P; Cai X; Wang D; Chen S; Yuan J; Li L; Shen J Colloids Surf B Biointerfaces; 2013 Oct; 110():327-32. PubMed ID: 23735748 [TBL] [Abstract][Full Text] [Related]
30. Molecular simulations and understanding of antifouling zwitterionic polymer brushes. Liu Y; Zhang D; Ren B; Gong X; Xu L; Feng ZQ; Chang Y; He Y; Zheng J J Mater Chem B; 2020 May; 8(17):3814-3828. PubMed ID: 32227061 [TBL] [Abstract][Full Text] [Related]
31. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Yuan W; Feng Y; Wang H; Yang D; An B; Zhang W; Khan M; Guo J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3644-51. PubMed ID: 23910260 [TBL] [Abstract][Full Text] [Related]
32. Anti-biofouling Sulfobetaine Polymer Thin Films on Silicon and Silicon Nanopore Membranes. Li L; Marchant RE; Dubnisheva A; Roy S; Fissell WH J Biomater Sci Polym Ed; 2011; 22(1-3):91-106. PubMed ID: 20546677 [TBL] [Abstract][Full Text] [Related]
33. Design of hemocompatible and antifouling PET sheets with synergistic zwitterionic surfaces. Wang Y; Shen J; Yuan J J Colloid Interface Sci; 2016 Oct; 480():205-217. PubMed ID: 27442148 [TBL] [Abstract][Full Text] [Related]
34. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry. Xiang T; Lu T; Xie Y; Zhao WF; Sun SD; Zhao CS Acta Biomater; 2016 Aug; 40():162-171. PubMed ID: 27039977 [TBL] [Abstract][Full Text] [Related]
35. Probing biofouling resistant polymer brush surfaces by atomic force microscopy based force spectroscopy. Schön P; Kutnyanszky E; ten Donkelaar B; Santonicola MG; Tecim T; Aldred N; Clare AS; Vancso GJ Colloids Surf B Biointerfaces; 2013 Feb; 102():923-30. PubMed ID: 23138001 [TBL] [Abstract][Full Text] [Related]
36. Generic top-functionalization of patterned antifouling zwitterionic polymers on indium tin oxide. Li Y; Giesbers M; Gerth M; Zuilhof H Langmuir; 2012 Aug; 28(34):12509-17. PubMed ID: 22888834 [TBL] [Abstract][Full Text] [Related]
37. Grafting polymer brushes on biomimetic structural surfaces for anti-algae fouling and foul release. Wan F; Pei X; Yu B; Ye Q; Zhou F; Xue Q ACS Appl Mater Interfaces; 2012 Sep; 4(9):4557-65. PubMed ID: 22931043 [TBL] [Abstract][Full Text] [Related]
38. A robust way to prepare blood-compatible and anti-fouling polyethersulfone membrane. Xie Y; Wang R; Li S; Xiang T; Zhao CS Colloids Surf B Biointerfaces; 2016 Oct; 146():326-33. PubMed ID: 27371892 [TBL] [Abstract][Full Text] [Related]
39. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property. Liu P; Huang T; Liu P; Shi S; Chen Q; Li L; Shen J J Colloid Interface Sci; 2016 Oct; 480():91-101. PubMed ID: 27416290 [TBL] [Abstract][Full Text] [Related]