BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28891497)

  • 1. A framework to reconcile frequency scaling measurements, from intracellular recordings, local-field potentials, up to EEG and MEG signals.
    Bedard C; Gomes JM; Bal T; Destexhe A
    J Integr Neurosci; 2017; 16(1):3-18. PubMed ID: 28891497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular Impedance Measurements Reveal Non-ohmic Properties of the Extracellular Medium around Neurons.
    Gomes JM; Bédard C; Valtcheva S; Nelson M; Khokhlova V; Pouget P; Venance L; Bal T; Destexhe A
    Biophys J; 2016 Jan; 110(1):234-46. PubMed ID: 26745426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media.
    Dehghani N; Bédard C; Cash SS; Halgren E; Destexhe A
    J Comput Neurosci; 2010 Dec; 29(3):405-21. PubMed ID: 20697790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in MEG and EEG power-law scaling explained by a coupling between spatial coherence and frequency: a simulation study.
    Bénar CG; Grova C; Jirsa VK; Lina JM
    J Comput Neurosci; 2019 Aug; 47(1):31-41. PubMed ID: 31292816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative power spectral analysis of simultaneous electroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media : EEG and MEG power spectra.
    Dehghani N; Bédard C; Cash SS; Halgren E; Destexhe A
    J Comput Neurosci; 2010 Jun; ():. PubMed ID: 20556640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular and intracellular components of the impedance of neural tissue.
    Bedard C; Piette C; Venance L; Destexhe A
    Biophys J; 2022 Mar; 121(6):869-885. PubMed ID: 35182541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model of low-pass filtering of local field potentials in brain tissue.
    Bédard C; Kröger H; Destexhe A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051911. PubMed ID: 16802971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroscopic models of local field potentials and the apparent 1/f noise in brain activity.
    Bédard C; Destexhe A
    Biophys J; 2009 Apr; 96(7):2589-603. PubMed ID: 19348744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-low-noise EEG/MEG systems enable bimodal non-invasive detection of spike-like human somatosensory evoked responses at 1 kHz.
    Fedele T; Scheer HJ; Burghoff M; Curio G; Körber R
    Physiol Meas; 2015 Feb; 36(2):357-68. PubMed ID: 25612926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials: intracellular-LFP transfer function.
    Bédard C; Rodrigues S; Roy N; Contreras D; Destexhe A
    J Comput Neurosci; 2010 Dec; 29(3):389-403. PubMed ID: 20559865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnitude and behavior of cross-talk effects in multichannel electrophysiology experiments.
    Nelson MJ; Valtcheva S; Venance L
    J Neurophysiol; 2017 Jul; 118(1):574-594. PubMed ID: 28424297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial filter approach for comparison of the forward and inverse problems of electroencephalography and magnetoencephalography.
    Bradshaw LA; Wijesinghe RS; Wikswo JP
    Ann Biomed Eng; 2001 Mar; 29(3):214-26. PubMed ID: 11310783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized cable formalism to calculate the magnetic field of single neurons and neuronal populations.
    Bedard C; Destexhe A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042723. PubMed ID: 25375539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.
    Engemann DA; Gramfort A
    Neuroimage; 2015 Mar; 108():328-42. PubMed ID: 25541187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance Spectrum in Cortical Tissue: Implications for Propagation of LFP Signals on the Microscopic Level.
    Miceli S; Ness TV; Einevoll GT; Schubert D
    eNeuro; 2017; 4(1):. PubMed ID: 28197543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrapolating meaning from local field potential recordings.
    Harris Bozer AL; Uhelski ML; Li AL
    J Integr Neurosci; 2017; 16(1):107-126. PubMed ID: 28891502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics.
    Srinivasan R; Winter WR; Ding J; Nunez PL
    J Neurosci Methods; 2007 Oct; 166(1):41-52. PubMed ID: 17698205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal Modeling of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0.
    Hagen E; Næss S; Ness TV; Einevoll GT
    Front Neuroinform; 2018; 12():92. PubMed ID: 30618697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Canonical maximization of coherence: A novel tool for investigation of neuronal interactions between two datasets.
    Vidaurre C; Nolte G; de Vries IEJ; Gómez M; Boonstra TW; Müller KR; Villringer A; Nikulin VV
    Neuroimage; 2019 Nov; 201():116009. PubMed ID: 31302256
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.