BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28891794)

  • 1. A new target for G protein signaling.
    Csanády L
    Elife; 2017 Sep; 6():. PubMed ID: 28891794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promiscuous G-Protein-Coupled Receptor Inhibition of Transient Receptor Potential Melastatin 3 Ion Channels by Gβγ Subunits.
    Alkhatib O; da Costa R; Gentry C; Quallo T; Bevan S; Andersson DA
    J Neurosci; 2019 Oct; 39(40):7840-7852. PubMed ID: 31451581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels.
    Dembla S; Behrendt M; Mohr F; Goecke C; Sondermann J; Schneider FM; Schmidt M; Stab J; Enzeroth R; Leitner MG; Nuñez-Badinez P; Schwenk J; Nürnberg B; Cohen A; Philipp SE; Greffrath W; Bünemann M; Oliver D; Zakharian E; Schmidt M; Oberwinkler J
    Elife; 2017 Aug; 6():. PubMed ID: 28826482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Transient Receptor Potential Melastatin 3 ion channels by G-protein βγ subunits.
    Badheka D; Yudin Y; Borbiro I; Hartle CM; Yazici A; Mirshahi T; Rohacs T
    Elife; 2017 Aug; 6():. PubMed ID: 28829742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G protein βγ subunits inhibit TRPM3 ion channels in sensory neurons.
    Quallo T; Alkhatib O; Gentry C; Andersson DA; Bevan S
    Elife; 2017 Aug; 6():. PubMed ID: 28826490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural basis for an on-off switch controlling Gβγ-mediated inhibition of TRPM3 channels.
    Behrendt M; Gruss F; Enzeroth R; Dembla S; Zhao S; Crassous PA; Mohr F; Nys M; Louros N; Gallardo R; Zorzini V; Wagner D; Economou A; Rousseau F; Schymkowitz J; Philipp SE; Rohacs T; Ulens C; Oberwinkler J
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):29090-29100. PubMed ID: 33122432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statins Perturb G
    Tennakoon M; Kankanamge D; Senarath K; Fasih Z; Karunarathne A
    Mol Pharmacol; 2019 Apr; 95(4):361-375. PubMed ID: 30765461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of Gβγ Release upon GPCR Activation.
    Martemyanov KA
    Trends Biochem Sci; 2021 Sep; 46(9):703-704. PubMed ID: 34034924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes.
    Dupré DJ; Robitaille M; Rebois RV; Hébert TE
    Annu Rev Pharmacol Toxicol; 2009; 49():31-56. PubMed ID: 18834311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer.
    Shen Y; Rampino MA; Carroll RC; Nawy S
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8752-7. PubMed ID: 22586107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G protein regulation of neuronal calcium channels: back to the future.
    Proft J; Weiss N
    Mol Pharmacol; 2015 Jun; 87(6):890-906. PubMed ID: 25549669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging non-canonical functions for heterotrimeric G proteins in cellular signaling.
    Ahmed SM; Angers S
    J Recept Signal Transduct Res; 2013 Jun; 33(3):177-83. PubMed ID: 23721574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G-protein βγ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor signaling.
    Smrcka AV; Fisher I
    Cell Mol Life Sci; 2019 Nov; 76(22):4447-4459. PubMed ID: 31435698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers.
    Touhara KK; Wang W; MacKinnon R
    Elife; 2016 Apr; 5():. PubMed ID: 27074664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recruitment of Gβγ controls the basal activity of G-protein coupled inwardly rectifying potassium (GIRK) channels: crucial role of distal C terminus of GIRK1.
    Kahanovitch U; Tsemakhovich V; Berlin S; Rubinstein M; Styr B; Castel R; Peleg S; Tabak G; Dessauer CW; Ivanina T; Dascal N
    J Physiol; 2014 Dec; 592(24):5373-90. PubMed ID: 25384780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling.
    Blumer JB; Smrcka AV; Lanier SM
    Pharmacol Ther; 2007 Mar; 113(3):488-506. PubMed ID: 17240454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional role of a C-terminal Gbetagamma-binding domain of Ca(v)2.2 channels.
    Li B; Zhong H; Scheuer T; Catterall WA
    Mol Pharmacol; 2004 Sep; 66(3):761-9. PubMed ID: 15322269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a receptor-independent activator of G protein signaling (AGS8) in ischemic heart and its interaction with Gbetagamma.
    Sato M; Cismowski MJ; Toyota E; Smrcka AV; Lucchesi PA; Chilian WM; Lanier SM
    Proc Natl Acad Sci U S A; 2006 Jan; 103(3):797-802. PubMed ID: 16407149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner.
    Kinoshita-Kawada M; Oberdick J; Xi Zhu M
    Brain Res Mol Brain Res; 2004 Dec; 132(1):73-86. PubMed ID: 15548431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of Gbetagamma with RACK1 and other WD40 repeat proteins.
    Chen S; Spiegelberg BD; Lin F; Dell EJ; Hamm HE
    J Mol Cell Cardiol; 2004 Aug; 37(2):399-406. PubMed ID: 15276010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.