These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28891934)

  • 1. Fatigue Properties of the Ultra-High Strength Steel TM210A.
    Yin GQ; Kang X; Zhao GP
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28891934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Fatigue Behaviors of a Medium-Carbon Pearlitic Wheel-Steel with Elongated Sulfides in High-Cycle and Very-High-Cycle Regimes.
    Liu L; Ma Y; Liu S; Wang S
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue Life for Different Stress Concentration Factors for Stainless Steel 1.4301.
    Strzelecki P; Mazurkiewicz A; Musiał J; Tomaszewski T; Słomion M
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Notch fatigue behavior: Metallic glass versus ultra-high strength steel.
    Wang XD; Qu RT; Wu SJ; Duan QQ; Liu ZQ; Zhu ZW; Zhang HF; Zhang ZF
    Sci Rep; 2016 Oct; 6():35557. PubMed ID: 27752136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing and Analysis of Uniaxial Mechanical Fatigue, Charpy Impact Fracture Energy and Microhardness of Two Low-Carbon Steels.
    Brnic J; Balos S; Brcic M; Dramicanin M; Krscanski S; Milutinovic M; Ding B; Gao Z
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexural Fatigue Properties of Ultra-High Performance Engineered Cementitious Composites (UHP-ECC) Reinforced by Polymer Fibers.
    Sui L; Zhong Q; Yu K; Xing F; Li P; Zhou Y
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotating Bending Fatigue Behaviors of C17200 Beryllium Copper Alloy at High Temperatures.
    Lai F; Mao K; Cao C; Hu A; Tu J; Lin Y
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are linear elastic material properties relevant predictors of the cyclic fatigue resistance of dental resin composites?
    Belli R; Petschelt A; Lohbauer U
    Dent Mater; 2014 Apr; 30(4):381-91. PubMed ID: 24529534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Static and Fatigue Behavior Investigation of Artificial Notched Steel Reinforcement.
    Ma Y; Wang Q; Guo Z; Wang G; Wang L; Zhang J
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress Ratio and Notch Effects on the Very High Cycle Fatigue Properties of a Near-Alpha Titanium Alloy.
    Yang K; Zhong B; Huang Q; He C; Huang ZY; Wang Q; Liu YJ
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30235842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants.
    Dick JC; Bourgeault CA
    Spine (Phila Pa 1976); 2001 Aug; 26(15):1668-72. PubMed ID: 11474353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotating fatigue and flexural strength of direct and indirect resin-composite restorative materials.
    Mirmohammadi H; Kleverlaan CJ; Feilzer AJ
    Am J Dent; 2009 Aug; 22(4):219-22. PubMed ID: 19824558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic Tests of Smooth and Notched Specimens Subjected to Bending and Torsion Taking into Account the Effect of Mean Stress.
    Pawliczek R; Rozumek D
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32384608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue Limit of Custom 465 with Surface Strengthening Treatment.
    An G; Liu RJ; Yin GQ
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31935829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Cycle Fatigue Performance of LPBF 304L Stainless Steel at Nominal and Optimized Parameters.
    Parvez MM; Pan T; Chen Y; Karnati S; Newkirk JW; Liou F
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32244376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Printing Layer Orientation on the High-Frequency Bending-Fatigue Life and Tensile Strength of Additively Manufactured 17-4 PH Stainless Steel.
    Ghadimi H; Jirandehi AP; Nemati S; Ding H; Garbie A; Raush J; Zeng C; Guo S
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Ultrasonic Surface Impact on the Fatigue Properties of Ti3Zr2Sn3Mo25Nb.
    Cheng Z; Cao X; Xu X; Shen Q; Yu T; Jin J
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Baking Heat Treatment on the Fatigue Strength and Life of Shot Peened 4340M Landing Gear Steel.
    Ahn SH; Heo J; Kim J; Hwang H; Cho IS
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33333792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gamma Radiation Sterilization Reduces the High-cycle Fatigue Life of Allograft Bone.
    Islam A; Chapin K; Moore E; Ford J; Rimnac C; Akkus O
    Clin Orthop Relat Res; 2016 Mar; 474(3):827-35. PubMed ID: 26463571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue characteristics of ultra high molecular weight polyethylene with different molecular weight for implant material.
    Niinomi M; Wang L; Enjitsu T; Fukunaga K
    J Mater Sci Mater Med; 2001 Mar; 12(3):267-72. PubMed ID: 15348311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.