These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28891989)

  • 41. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings.
    Guo T; Liu F; Liang X; Qiu X; Huang Y; Xie C; Xu P; Mao W; Guan BO; Albert J
    Biosens Bioelectron; 2016 Apr; 78():221-228. PubMed ID: 26618641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrahigh-sensitive plasmonic sensing of gas using a two-dimensional dielectric grating.
    Hlubina P; Urbancova P; Pudis D; Goraus M; Jandura D; Ciprian D
    Opt Lett; 2019 Nov; 44(22):5602-5605. PubMed ID: 31730117
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Au-Ag Alloy Nanoshuttle Mediated Surface Plasmon Coupling for Enhanced Fluorescence Imaging.
    Xie KX; Li Z; Fang JH; Cao SH; Li YQ
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421131
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Radiative decay engineering 3. Surface plasmon-coupled directional emission.
    Lakowicz JR
    Anal Biochem; 2004 Jan; 324(2):153-69. PubMed ID: 14690679
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The synergistic enhancement of silver nanocubes and graphene oxide on surface plasmon-coupled emission.
    Xie KX; Xu LT; Zhai YY; Wang ZC; Chen M; Pan XH; Cao SH; Li YQ
    Talanta; 2019 Apr; 195():752-756. PubMed ID: 30625612
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering of Exciton-Plasmon Coupling Using 2D-WS
    Rai B; Sarma PV; Srinivasan V; Shaijumon MM; Ramamurthy SS
    Langmuir; 2021 Feb; 37(5):1954-1960. PubMed ID: 33494607
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods.
    Abadeer NS; Brennan MR; Wilson WL; Murphy CJ
    ACS Nano; 2014 Aug; 8(8):8392-406. PubMed ID: 25062430
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tamm State-Coupled Emission: Effect of Probe Location and Emission Wavelength.
    Badugu R; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2014 Sep; 118(37):21558-21571. PubMed ID: 25247029
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-Molecule Blinking Fluorescence Enhancement by Surface Plasmon-Coupled Emission-Based Substrates for Single-Molecule Localization Imaging.
    Chien FC; Lin CY; Abrigo G
    Anal Chem; 2021 Nov; 93(46):15401-15411. PubMed ID: 34730956
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thin InSb layers with metallic gratings: a novel platform for spectrally-selective THz plasmonic sensing.
    Lin S; Bhattarai K; Zhou J; Talbayev D
    Opt Express; 2016 Aug; 24(17):19448-57. PubMed ID: 27557222
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhancing Surface Plasmon Resonance Detection Using Nanostructured Au Chips.
    Indutnyi I; Ushenin Y; Hegemann D; Vandenbossche M; Myn'ko V; Lukaniuk M; Shepeliavyi P; Korchovyi A; Khrystosenko R
    Nanoscale Res Lett; 2016 Dec; 11(1):535. PubMed ID: 27910072
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compact hybrid plasmonic slot waveguide sensor with a giant enhancement factor for surface-enhanced Raman scattering application.
    Wang S; Zhu Y; Luo S; Zhu E; Chen S
    Opt Express; 2021 Aug; 29(16):24765-24778. PubMed ID: 34614825
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer.
    Kostov Y; Smith DS; Tolosa L; Rao G; Gryczynski I; Gryczynski Z; Malicka J; Lakowicz JR
    Biotechnol Prog; 2005; 21(6):1731-5. PubMed ID: 16321058
    [TBL] [Abstract][Full Text] [Related]  

  • 54. C60 as an active smart spacer material on silver thin film substrates for enhanced surface plasmon coupled emission.
    Mulpur P; Podila R; Ramamurthy SS; Kamisetti V; Rao AM
    Phys Chem Chem Phys; 2015 Apr; 17(15):10022-7. PubMed ID: 25785916
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis.
    Mei Z; Tang L
    Anal Chem; 2017 Jan; 89(1):633-639. PubMed ID: 27991768
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance.
    Tawa K; Hori H; Kintaka K; Kiyosue K; Tatsu Y; Nishii J
    Opt Express; 2008 Jun; 16(13):9781-90. PubMed ID: 18575546
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Compact surface plasmon-enhanced fluorescence biochip.
    Toma K; Vala M; Adam P; Homola J; Knoll W; Dostálek J
    Opt Express; 2013 Apr; 21(8):10121-32. PubMed ID: 23609717
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasmonic photothermal properties of silver nanoparticle grating films.
    Anuthum S; Hasegawa F; Lertvachirapaiboon C; Shinbo K; Kato K; Ounnunkad K; Baba A
    Phys Chem Chem Phys; 2022 Mar; 24(11):7060-7067. PubMed ID: 35258053
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Demonstration of a surface plasmon-coupled emission (SPCE)-based immunoassay in the absence of a spacer layer.
    Yuk JS; McDonagh C; MacCraith BD
    Anal Bioanal Chem; 2010 Nov; 398(5):1947-54. PubMed ID: 20658227
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope.
    Borejdo J; Calander N; Gryczynski Z; Gryczynski I
    Opt Express; 2006 Aug; 14(17):7878-88. PubMed ID: 19529155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.