These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28892078)

  • 1. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities.
    Lapek JD; Greninger P; Morris R; Amzallag A; Pruteanu-Malinici I; Benes CH; Haas W
    Nat Biotechnol; 2017 Oct; 35(10):983-989. PubMed ID: 28892078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Strategy to Combine Sample Multiplexing with Targeted Proteomics Assays for High-Throughput Protein Signature Characterization.
    Erickson BK; Rose CM; Braun CR; Erickson AR; Knott J; McAlister GC; Wühr M; Paulo JA; Everley RA; Gygi SP
    Mol Cell; 2017 Jan; 65(2):361-370. PubMed ID: 28065596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-throughput approach for measuring temporal changes in the interactome.
    Kristensen AR; Gsponer J; Foster LJ
    Nat Methods; 2012 Sep; 9(9):907-9. PubMed ID: 22863883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximizing binary interactome mapping with a minimal number of assays.
    Choi SG; Olivet J; Cassonnet P; Vidalain PO; Luck K; Lambourne L; Spirohn K; Lemmens I; Dos Santos M; Demeret C; Jones L; Rangarajan S; Bian W; Coutant EP; Janin YL; van der Werf S; Trepte P; Wanker EE; De Las Rivas J; Tavernier J; Twizere JC; Hao T; Hill DE; Vidal M; Calderwood MA; Jacob Y
    Nat Commun; 2019 Aug; 10(1):3907. PubMed ID: 31467278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LC-MS/MS-based targeted proteomics quantitatively detects the interaction between p53 and MDM2 in breast cancer.
    Zhang W; Zhong T; Chen Y
    J Proteomics; 2017 Jan; 152():172-180. PubMed ID: 27826076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing protein-protein interaction networks.
    Koh GC; Porras P; Aranda B; Hermjakob H; Orchard SE
    J Proteome Res; 2012 Apr; 11(4):2014-31. PubMed ID: 22385417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed Quantitative Proteomics for High-Throughput Comprehensive Proteome Comparisons of Human Cell Lines.
    Edwards A; Haas W
    Methods Mol Biol; 2016; 1394():1-13. PubMed ID: 26700037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of quantitative proteomics data and interaction networks: Identification of dysregulated cellular functions during cancer progression.
    Zanzoni A; Brun C
    Methods; 2016 Jan; 93():103-9. PubMed ID: 26386316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput methods for identification of protein-protein interactions involving short linear motifs.
    Blikstad C; Ivarsson Y
    Cell Commun Signal; 2015 Aug; 13():38. PubMed ID: 26297553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatics Tools for Proteomics Data Interpretation.
    Calderón-González KG; Hernández-Monge J; Herrera-Aguirre ME; Luna-Arias JP
    Adv Exp Med Biol; 2016; 919():281-341. PubMed ID: 27975225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-Protein Interaction Detection Via Mass Spectrometry-Based Proteomics.
    Turriziani B; von Kriegsheim A; Pennington SR
    Adv Exp Med Biol; 2016; 919():383-396. PubMed ID: 27975227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular proteomics analysis of different stages of colorectal cancer cell lines.
    Mathieu AA; Ohl-Séguy E; Dubois ML; Jean D; Jones C; Boudreau F; Boisvert FM
    Proteomics; 2016 Dec; 16(23):3009-3018. PubMed ID: 27689624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics: The interaction map.
    Baker M
    Nature; 2012 Apr; 484(7393):271-5. PubMed ID: 22498631
    [No Abstract]   [Full Text] [Related]  

  • 14. Isobaric Labeling Proteomics Allows a High-Throughput Investigation of Protein Corona Orientation.
    Liessi N; Maragliano L; Castagnola V; Bramini M; Benfenati F; Armirotti A
    Anal Chem; 2021 Jan; 93(2):784-791. PubMed ID: 33285070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative membrane proteomics analyses of breast cancer cell lines to understand the molecular mechanism of breast cancer brain metastasis.
    Peng W; Zhang Y; Zhu R; Mechref Y
    Electrophoresis; 2017 Sep; 38(17):2124-2134. PubMed ID: 28523741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quality control methodology for high-throughput protein-protein interaction screening.
    Vazquez A; Rual JF; Venkatesan K
    Methods Mol Biol; 2011; 781():279-94. PubMed ID: 21877286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining quantitative proteomics and interactomics for a deeper insight into molecular differences between human cell lines.
    Bakhtina AA; Wippel HH; Chavez JD; Bruce JE
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Networks in proteomics analysis of cancer.
    Goh WW; Wong L
    Curr Opin Biotechnol; 2013 Dec; 24(6):1122-8. PubMed ID: 23481377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomarkers of breast cancer apoptosis induced by chemotherapy and TRAIL.
    Leong S; McKay MJ; Christopherson RI; Baxter RC
    J Proteome Res; 2012 Feb; 11(2):1240-50. PubMed ID: 22133146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model.
    Daher A; de Groot J
    Exp Neurol; 2018 Jan; 299(Pt B):281-288. PubMed ID: 28923369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.