These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2889209)

  • 21. Relationship of the discharges of cortical neurones to movement in free-to-move monkeys.
    Porter R
    Brain Res; 1972 May; 40(1):39-43. PubMed ID: 4338262
    [No Abstract]   [Full Text] [Related]  

  • 22. Histological and electrophysiological analysis of the corticospinal pathway to forelimb motoneurons in common marmosets.
    Kondo T; Yoshihara Y; Yoshino-Saito K; Sekiguchi T; Kosugi A; Miyazaki Y; Nishimura Y; Okano HJ; Nakamura M; Okano H; Isa T; Ushiba J
    Neurosci Res; 2015 Sep; 98():35-44. PubMed ID: 26093181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relation of size and activity of motor cortex pyramidal tract neurons during skilled movements in the monkey.
    Fromm C; Evarts EV
    J Neurosci; 1981 May; 1(5):453-60. PubMed ID: 6809905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic linkages between corticomotoneuronal cells affecting forelimb muscles in behaving primates.
    Smith WS; Fetz EE
    J Neurophysiol; 2009 Aug; 102(2):1040-8. PubMed ID: 19515946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Higher primate-like direct corticomotoneuronal connections are transiently formed in a juvenile subprimate mammal.
    Murabe N; Mori T; Fukuda S; Isoo N; Ohno T; Mizukami H; Ozawa K; Yoshimura Y; Sakurai M
    Sci Rep; 2018 Nov; 8(1):16536. PubMed ID: 30410053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional organization of the motor cortex.
    Porter R
    Adv Neurol; 1983; 39():301-19. PubMed ID: 6660098
    [No Abstract]   [Full Text] [Related]  

  • 27. Motor mechanisms: the role of the pyramidal system in motor control.
    Brooks VB; Stoney SD
    Annu Rev Physiol; 1971; 33():337-92. PubMed ID: 4951052
    [No Abstract]   [Full Text] [Related]  

  • 28. Time course of minimal corticomotoneuronal excitatory postsynaptic potentials in lumbar motoneurons of the monkey.
    Porter R; Hore J
    J Neurophysiol; 1969 May; 32(3):443-51. PubMed ID: 4306900
    [No Abstract]   [Full Text] [Related]  

  • 29. Lack of monosynaptic corticomotoneuronal EPSPs in rats: disynaptic EPSPs mediated via reticulospinal neurons and polysynaptic EPSPs via segmental interneurons.
    Alstermark B; Ogawa J; Isa T
    J Neurophysiol; 2004 Apr; 91(4):1832-9. PubMed ID: 14602838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological basis of motor effects of a transient stimulus to cerebral cortex.
    Amassian VE; Stewart M; Quirk GJ; Rosenthal JL
    Neurosurgery; 1987 Jan; 20(1):74-93. PubMed ID: 3543727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repetitive activation of the corticospinal pathway by means of rTMS may reduce the efficiency of corticomotoneuronal synapses.
    Taube W; Leukel C; Nielsen JB; Lundbye-Jensen J
    Cereb Cortex; 2015 Jun; 25(6):1629-37. PubMed ID: 24408957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor command for precision grip in the macaque monkey can be mediated by spinal interneurons.
    Alstermark B; Pettersson LG; Nishimura Y; Yoshino-Saito K; Tsuboi F; Takahashi M; Isa T
    J Neurophysiol; 2011 Jul; 106(1):122-6. PubMed ID: 21511706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres.
    Eyre JA; Miller S; Clowry GJ; Conway EA; Watts C
    Brain; 2000 Jan; 123 ( Pt 1)():51-64. PubMed ID: 10611120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Corticospinal System and Amyotrophic Lateral Sclerosis: IFCN handbook chapter.
    Lemon R
    Clin Neurophysiol; 2024 Apr; 160():56-67. PubMed ID: 38401191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Striking differences in transmission of corticospinal excitation to upper limb motoneurons in two primate species.
    Nakajima K; Maier MA; Kirkwood PA; Lemon RN
    J Neurophysiol; 2000 Aug; 84(2):698-709. PubMed ID: 10938297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cerebral control of contralateral and ipsilateral arm, hand and finger movements in the split-brain rhesus monkey.
    Brinkman J; Kuypers HG
    Brain; 1973 Dec; 96(4):653-74. PubMed ID: 4204228
    [No Abstract]   [Full Text] [Related]  

  • 37. Disynaptic pyramidal excitation in forelimb motoneurons mediated via C(3)-C(4) propriospinal neurons in the Macaca fuscata.
    Alstermark B; Isa T; Ohki Y; Saito Y
    J Neurophysiol; 1999 Dec; 82(6):3580-5. PubMed ID: 10601484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical and subcortical compensatory mechanisms after spinal cord injury in monkeys.
    Nishimura Y; Isa T
    Exp Neurol; 2012 May; 235(1):152-61. PubMed ID: 21884698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spinal pathways mediating motor cortex evoked excitability changes in segmental motoneurons in pyramidal primates.
    Stewart DH; Preston JB
    J Neurophysiol; 1968 Nov; 31(6):938-46. PubMed ID: 4974779
    [No Abstract]   [Full Text] [Related]  

  • 40. Formation of descending pathways mediating cortical command to forelimb motoneurons in neonatally hemidecorticated rats.
    Umeda T; Takahashi M; Isa K; Isa T
    J Neurophysiol; 2010 Sep; 104(3):1707-16. PubMed ID: 20660415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.