BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28892124)

  • 1. Systematic optimization of L-tryptophan riboswitches for efficient monitoring of the metabolite in Escherichia coli.
    Jang S; Jung GY
    Biotechnol Bioeng; 2018 Jan; 115(1):266-271. PubMed ID: 28892124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Artificial Riboswitches for Monitoring of Naringenin In Vivo.
    Jang S; Jang S; Xiu Y; Kang TJ; Lee SH; Koffas MAG; Jung GY
    ACS Synth Biol; 2017 Nov; 6(11):2077-2085. PubMed ID: 28749656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering and In Vivo Applications of Riboswitches.
    Hallberg ZF; Su Y; Kitto RZ; Hammond MC
    Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design criteria for synthetic riboswitches acting on transcription.
    Wachsmuth M; Domin G; Lorenz R; Serfling R; Findeiß S; Stadler PF; Mörl M
    RNA Biol; 2015; 12(2):221-31. PubMed ID: 25826571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression.
    Wang X; Fang C; Wang Y; Shi X; Yu F; Xiong J; Chou SH; He J
    Microbiol Spectr; 2023 Feb; 11(1):e0275222. PubMed ID: 36688639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riboselector: riboswitch-based synthetic selection device to expedite evolution of metabolite-producing microorganisms.
    Jang S; Yang J; Seo SW; Jung GY
    Methods Enzymol; 2015; 550():341-62. PubMed ID: 25605394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing Fluorogenic Riboswitches for Imaging Metabolite Concentration Dynamics in Bacterial Cells.
    Litke JL; You M; Jaffrey SR
    Methods Enzymol; 2016; 572():315-33. PubMed ID: 27241761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Evaluation of Genetic and Environmental Factors Affecting Performance of Translational Riboswitches.
    Kent R; Dixon N
    ACS Synth Biol; 2019 Apr; 8(4):884-901. PubMed ID: 30897329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual genetic selection of synthetic riboswitches in Escherichia coli.
    Nomura Y; Yokobayashi Y
    Methods Mol Biol; 2014; 1111():131-40. PubMed ID: 24549616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures.
    Xiu Y; Jang S; Jones JA; Zill NA; Linhardt RJ; Yuan Q; Jung GY; Koffas MAG
    Biotechnol Bioeng; 2017 Oct; 114(10):2235-2244. PubMed ID: 28543037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.
    Berens C; Groher F; Suess B
    Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli.
    Hong KQ; Zhang J; Jin B; Chen T; Wang ZW
    Microb Cell Fact; 2022 Apr; 21(1):56. PubMed ID: 35392910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-chip analysis, indexing and screening for chemical producing bacteria in a microfluidic static droplet array.
    Jang S; Lee B; Jeong HH; Jin SH; Jang S; Kim SG; Jung GY; Lee CS
    Lab Chip; 2016 May; 16(10):1909-16. PubMed ID: 27102263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species.
    Robinson CJ; Vincent HA; Wu MC; Lowe PT; Dunstan MS; Leys D; Micklefield J
    J Am Chem Soc; 2014 Jul; 136(30):10615-24. PubMed ID: 24971878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riboswitch regulation mechanisms: RNA, metabolites and regulatory proteins.
    Bédard AV; Hien EDM; Lafontaine DA
    Biochim Biophys Acta Gene Regul Mech; 2020 Mar; 1863(3):194501. PubMed ID: 32036061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riboswitch-Based Reversible Dual Color Sensor.
    Harbaugh SV; Goodson MS; Dillon K; Zabarnick S; Kelley-Loughnane N
    ACS Synth Biol; 2017 May; 6(5):766-781. PubMed ID: 28121427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From SELEX to cell dual selections for synthetic riboswitches.
    Sinha J; Topp S; Gallivan JP
    Methods Enzymol; 2011; 497():207-20. PubMed ID: 21601088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning strand displacement kinetics enables programmable ZTP riboswitch dynamic range in vivo.
    Bushhouse DZ; Lucks JB
    Nucleic Acids Res; 2023 Apr; 51(6):2891-2903. PubMed ID: 36864761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo evolutionary engineering of riboswitch with high-threshold for N-acetylneuraminic acid production.
    Pang Q; Han H; Liu X; Wang Z; Liang Q; Hou J; Qi Q; Wang Q
    Metab Eng; 2020 May; 59():36-43. PubMed ID: 31954846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.