These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 28892134)
1. Inhibition analysis of inhibitors derived from lignocellulose pretreatment on the metabolic activity of Zymomonas mobilis biofilm and planktonic cells and the proteomic responses. Todhanakasem T; Yodsanga S; Sowatad A; Kanokratana P; Thanonkeo P; Champreda V Biotechnol Bioeng; 2018 Jan; 115(1):70-81. PubMed ID: 28892134 [TBL] [Abstract][Full Text] [Related]
2. Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. Todhanakasem T; Sangsutthiseree A; Areerat K; Young GM; Thanonkeo P N Biotechnol; 2014 Sep; 31(5):451-9. PubMed ID: 24930397 [TBL] [Abstract][Full Text] [Related]
3. Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses. Nouri H; Moghimi H; Marashi SA; Elahi E PLoS One; 2020; 15(10):e0240330. PubMed ID: 33035245 [TBL] [Abstract][Full Text] [Related]
4. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Shui ZX; Qin H; Wu B; Ruan ZY; Wang LS; Tan FR; Wang JL; Tang XY; Dai LC; Hu GQ; He MX Appl Microbiol Biotechnol; 2015 Jul; 99(13):5739-48. PubMed ID: 25935346 [TBL] [Abstract][Full Text] [Related]
5. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue. Gu H; Zhang J; Bao J Biotechnol Bioeng; 2015 Sep; 112(9):1770-82. PubMed ID: 25851269 [TBL] [Abstract][Full Text] [Related]
6. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. Yang S; Pelletier DA; Lu TY; Brown SD BMC Microbiol; 2010 May; 10():135. PubMed ID: 20459639 [TBL] [Abstract][Full Text] [Related]
7. Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production. Todhanakasem T; Wu B; Simeon S World J Microbiol Biotechnol; 2020 Jul; 36(8):112. PubMed ID: 32656581 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Yi X; Gu H; Gao Q; Liu ZL; Bao J Biotechnol Biofuels; 2015; 8():153. PubMed ID: 26396591 [TBL] [Abstract][Full Text] [Related]
9. Improvement of ethanol productivity and energy efficiency by degradation of inhibitors using recombinant Zymomonas mobilis (pHW20a-fdh). Dong HW; Fan LQ; Luo Z; Zhong JJ; Ryu DD; Bao J Biotechnol Bioeng; 2013 Sep; 110(9):2395-404. PubMed ID: 23475631 [TBL] [Abstract][Full Text] [Related]
10. Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw. Todhanakasem T; Tiwari R; Thanonkeo P J Gen Appl Microbiol; 2016; 62(2):68-74. PubMed ID: 27118074 [TBL] [Abstract][Full Text] [Related]
11. Proteomic and metabolomic analysis of the cellular biomarkers related to inhibitors tolerance in Chang D; Yu Z; Ul Islam Z; French WT; Zhang Y; Zhang H Biotechnol Biofuels; 2018; 11():283. PubMed ID: 30356850 [TBL] [Abstract][Full Text] [Related]
12. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Zhao N; Bai Y; Liu CG; Zhao XQ; Xu JF; Bai FW Biotechnol J; 2014 Mar; 9(3):362-71. PubMed ID: 24357469 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of furan aldehydes conversion in Wang X; Gao Q; Bao J Biotechnol Biofuels; 2017; 10():24. PubMed ID: 28163781 [TBL] [Abstract][Full Text] [Related]
14. Alcoholic fermentation of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the presence of inhibitory compounds and seawater. Gonçalves FA; dos Santos ES; de Macedo GR J Basic Microbiol; 2015 Jun; 55(6):695-708. PubMed ID: 25760943 [TBL] [Abstract][Full Text] [Related]
15. Biochar-mediated enhanced ethanol fermentation (BMEEF) in Wang WT; Dai LC; Wu B; Qi BF; Huang TF; Hu GQ; He MX Biotechnol Biofuels; 2020; 13():28. PubMed ID: 32127915 [TBL] [Abstract][Full Text] [Related]
16. Industrial robustness linked to the gluconolactonase from Zymomonas mobilis. Alvin A; Kim J; Jeong GT; Tsang YF; Kwon EE; Neilan BA; Jeon YJ Appl Microbiol Biotechnol; 2017 Jun; 101(12):5089-5099. PubMed ID: 28341886 [TBL] [Abstract][Full Text] [Related]
17. Cysteine supplementation enhanced inhibitor tolerance of Zymomonas mobilis for economic lignocellulosic bioethanol production. Yan X; Wang X; Yang Y; Wang Z; Zhang H; Li Y; He Q; Li M; Yang S Bioresour Technol; 2022 Apr; 349():126878. PubMed ID: 35189331 [TBL] [Abstract][Full Text] [Related]
18. New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis. Zhang K; Lu X; Li Y; Jiang X; Liu L; Wang H Appl Microbiol Biotechnol; 2019 Mar; 103(5):2087-2099. PubMed ID: 30661108 [TBL] [Abstract][Full Text] [Related]
19. Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. Franden MA; Pienkos PT; Zhang M J Biotechnol; 2009 Dec; 144(4):259-67. PubMed ID: 19683550 [TBL] [Abstract][Full Text] [Related]
20. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation. Liu YF; Hsieh CW; Chang YS; Wung BS BMC Biotechnol; 2017 Aug; 17(1):63. PubMed ID: 28764759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]