These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 28892199)
1. Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements. Larsen CB; Wenger OS Chemistry; 2018 Feb; 24(9):2039-2058. PubMed ID: 28892199 [TBL] [Abstract][Full Text] [Related]
2. Light Runs Across Iron Catalysts in Organic Transformations. Zhou WJ; Wu XD; Miao M; Wang ZH; Chen L; Shan SY; Cao GM; Yu DG Chemistry; 2020 Nov; 26(66):15052-15064. PubMed ID: 32614093 [TBL] [Abstract][Full Text] [Related]
3. Photoactive Complexes with Earth-Abundant Metals. Wenger OS J Am Chem Soc; 2018 Oct; 140(42):13522-13533. PubMed ID: 30351136 [TBL] [Abstract][Full Text] [Related]
4. Photoactive Nickel Complexes in Cross-Coupling Catalysis. Wenger OS Chemistry; 2021 Feb; 27(7):2270-2278. PubMed ID: 33111994 [TBL] [Abstract][Full Text] [Related]
5. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes. Reiser O Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932 [TBL] [Abstract][Full Text] [Related]
7. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants. Fabry DC; Rueping M Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812 [TBL] [Abstract][Full Text] [Related]
8. Photophysics and photochemistry with Earth-abundant metals - fundamentals and concepts. Förster C; Heinze K Chem Soc Rev; 2020 Feb; 49(4):1057-1070. PubMed ID: 32025671 [TBL] [Abstract][Full Text] [Related]
9. Is Iron the New Ruthenium? Wenger OS Chemistry; 2019 Apr; 25(24):6043-6052. PubMed ID: 30615242 [TBL] [Abstract][Full Text] [Related]
10. Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry. Ma J; Zhang X; Huang X; Luo S; Meggers E Nat Protoc; 2018 Apr; 13(4):605-632. PubMed ID: 29494576 [TBL] [Abstract][Full Text] [Related]
11. Chromium(0), Molybdenum(0), and Tungsten(0) Isocyanide Complexes as Luminophores and Photosensitizers with Long-Lived Excited States. Büldt LA; Wenger OS Angew Chem Int Ed Engl; 2017 May; 56(21):5676-5682. PubMed ID: 28317225 [TBL] [Abstract][Full Text] [Related]
12. Photostable Ruthenium(II) Isocyanoborato Luminophores and Their Use in Energy Transfer and Photoredox Catalysis. Schmid L; Kerzig C; Prescimone A; Wenger OS JACS Au; 2021 Jun; 1(6):819-832. PubMed ID: 34467335 [TBL] [Abstract][Full Text] [Related]
13. Visible-Light-Induced Homolysis of Earth-Abundant Metal-Substrate Complexes: A Complementary Activation Strategy in Photoredox Catalysis. Abderrazak Y; Bhattacharyya A; Reiser O Angew Chem Int Ed Engl; 2021 Sep; 60(39):21100-21115. PubMed ID: 33599363 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic Origin of Photoredox Catalysis Involving Iron(II) Polypyridyl Chromophores. Woodhouse MD; McCusker JK J Am Chem Soc; 2020 Sep; 142(38):16229-16233. PubMed ID: 32914970 [TBL] [Abstract][Full Text] [Related]
19. A Luminescent Zirconium(IV) Complex as a Molecular Photosensitizer for Visible Light Photoredox Catalysis. Zhang Y; Petersen JL; Milsmann C J Am Chem Soc; 2016 Oct; 138(40):13115-13118. PubMed ID: 27643820 [TBL] [Abstract][Full Text] [Related]
20. Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d Sinha N; Wenger OS J Am Chem Soc; 2023 Mar; 145(9):4903-4920. PubMed ID: 36808978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]