These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 28892351)

  • 21. Electromagnetic interference shielding effectiveness of monolayer graphene.
    Hong SK; Kim KY; Kim TY; Kim JH; Park SW; Kim JH; Cho BJ
    Nanotechnology; 2012 Nov; 23(45):455704. PubMed ID: 23085718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible, Transparent and Conductive Metal Mesh Films with Ultra-High FoM for Stretchable Heating and Electromagnetic Interference Shielding.
    Chen Z; Yang S; Huang J; Gu Y; Huang W; Liu S; Lin Z; Zeng Z; Hu Y; Chen Z; Yang B; Gui X
    Nanomicro Lett; 2024 Jan; 16(1):92. PubMed ID: 38252258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrathin flexible graphene films with high thermal conductivity and excellent EMI shielding performance using large-sized graphene oxide flakes.
    Lin S; Ju S; Zhang J; Shi G; He Y; Jiang D
    RSC Adv; 2019 Jan; 9(3):1419-1427. PubMed ID: 35517999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding.
    Han Y; Lin J; Liu Y; Fu H; Ma Y; Jin P; Tan J
    Sci Rep; 2016 May; 6():25601. PubMed ID: 27151578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene Fluoride)/Carbon Composite Films.
    Zhao B; Zhao C; Li R; Hamidinejad SM; Park CB
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20873-20884. PubMed ID: 28558470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superhigh Electromagnetic Interference Shielding of Ultrathin Aligned Pristine Graphene Nanosheets Film.
    Wei Q; Pei S; Qian X; Liu H; Liu Z; Zhang W; Zhou T; Zhang Z; Zhang X; Cheng HM; Ren W
    Adv Mater; 2020 Apr; 32(14):e1907411. PubMed ID: 32091164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra-Broadband Strong Electromagnetic Interference Shielding with Ferromagnetic Graphene Quartz Fabric.
    Xie Y; Liu S; Huang K; Chen B; Shi P; Chen Z; Liu B; Liu K; Wu Z; Chen K; Qi Y; Liu Z
    Adv Mater; 2022 Jul; 34(30):e2202982. PubMed ID: 35605207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible and transparent silver nanowires/biopolymer film for high-efficient electromagnetic interference shielding.
    Wang G; Hao L; Zhang X; Tan S; Zhou M; Gu W; Ji G
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):89-99. PubMed ID: 34492357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transparent and Flexible Electromagnetic Interference Shielding Materials by Constructing Sandwich AgNW@MXene/Wood Composites.
    Cheng M; Ying M; Zhao R; Ji L; Li H; Liu X; Zhang J; Li Y; Dong X; Zhang X
    ACS Nano; 2022 Oct; 16(10):16996-17007. PubMed ID: 36134706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 2D Monolayers for Superior Transparent Electromagnetic Interference Shielding.
    Yost DC; Friedman AL; Hanbicki AT; Grossman JC
    ACS Nano; 2022 Jun; 16(6):9498-9509. PubMed ID: 36350197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scalable Production of Highly Conductive 2D NbSe
    Li Y; Cao J; Chen G; He L; Du X; Xie J; Wang Y; Hu W
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6250-6260. PubMed ID: 38284410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rational design of hybrid graphene films for high-performance transparent electrodes.
    Zhu Y; Sun Z; Yan Z; Jin Z; Tour JM
    ACS Nano; 2011 Aug; 5(8):6472-9. PubMed ID: 21774533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pore-Rich Cellulose-Derived Carbon Fiber@Graphene Core-Shell Composites for Electromagnetic Interference Shielding.
    Yang Y; Wan C; Huang Q; Hua J
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly Bendable and Durable Transparent Electromagnetic Interference Shielding Film Prepared by Wet Sintering of Silver Nanowires.
    Kim DG; Choi JH; Choi DK; Kim SW
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29730-29740. PubMed ID: 30106270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flexible MXene/Silver Nanowire-Based Transparent Conductive Film with Electromagnetic Interference Shielding and Electro-Photo-Thermal Performance.
    Zhou B; Su M; Yang D; Han G; Feng Y; Wang B; Ma J; Ma J; Liu C; Shen C
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40859-40869. PubMed ID: 32803950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding.
    Zhou E; Xi J; Liu Y; Xu Z; Guo Y; Peng L; Gao W; Ying J; Chen Z; Gao C
    Nanoscale; 2017 Dec; 9(47):18613-18618. PubMed ID: 29177334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust ZTO-reinforced Ag nanowire hybrid transparent conductive thin films with absorption-enhanced electromagnetic interference shielding property.
    Jenifer K; Parthiban S
    Nanotechnology; 2024 May; 35(30):. PubMed ID: 38593761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic.
    Xu Y; Yang Y; Yan DX; Duan H; Zhao G; Liu Y
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19143-19152. PubMed ID: 29766720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and Characterization of Waste Wood Cellulose Fiber/Graphene Nanoplatelet Carbon Papers for Application as Electromagnetic Interference Shielding Materials.
    Park J; Kwac LK; Kim HG; Shin HK
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermally Annealed Anisotropic Graphene Aerogels and Their Electrically Conductive Epoxy Composites with Excellent Electromagnetic Interference Shielding Efficiencies.
    Li XH; Li X; Liao KN; Min P; Liu T; Dasari A; Yu ZZ
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33230-33239. PubMed ID: 27934131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.