These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28892369)

  • 1. Unveiling Adsorption Mechanisms of Organic Pollutants onto Carbon Nanomaterials by Density Functional Theory Computations and Linear Free Energy Relationship Modeling.
    Wang Y; Chen J; Wei X; Hernandez Maldonado AJ; Chen Z
    Environ Sci Technol; 2017 Oct; 51(20):11820-11828. PubMed ID: 28892369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating adsorption of organic pollutants on finite (8,0) single-walled carbon nanotubes in water.
    Zou M; Zhang J; Chen J; Li X
    Environ Sci Technol; 2012 Aug; 46(16):8887-94. PubMed ID: 22816771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating and Predicting Adsorption of Organic Pollutants onto Black Phosphorus Nanomaterials.
    Su L; Wang Y; Wang Z; Zhang S; Xiao Z; Xia D; Chen J
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials.
    Zhou Y; Apul OG; Karanfil T
    Water Res; 2015 Aug; 79():57-67. PubMed ID: 25965888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of Estrogen Contaminants by Graphene Nanomaterials under Natural Organic Matter Preloading: Comparison to Carbon Nanotube, Biochar, and Activated Carbon.
    Jiang L; Liu Y; Liu S; Zeng G; Hu X; Hu X; Guo Z; Tan X; Wang L; Wu Z
    Environ Sci Technol; 2017 Jun; 51(11):6352-6359. PubMed ID: 28494154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling adsorption of organic pollutants onto single-walled carbon nanotubes with theoretical molecular descriptors using MLR and SVM algorithms.
    Wang Y; Chen J; Tang W; Xia D; Liang Y; Li X
    Chemosphere; 2019 Jan; 214():79-84. PubMed ID: 30261420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution.
    He L; Liu FF; Zhao M; Qi Z; Sun X; Afzal MZ; Sun X; Li Y; Hao J; Wang S
    J Environ Sci (China); 2018 Apr; 66():286-294. PubMed ID: 29628096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling of the adsorption of pharmaceutically active compounds on carbon-based nanomaterials.
    Ivanković K; Kern M; Rožman M
    J Hazard Mater; 2021 Jul; 414():125554. PubMed ID: 33684815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of pollutant aromatics on carbon nanotubes and graphite.
    Ramraj A; Hillier IH
    J Chem Inf Model; 2010 Apr; 50(4):585-8. PubMed ID: 20356088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon.
    Apul OG; Wang Q; Zhou Y; Karanfil T
    Water Res; 2013 Mar; 47(4):1648-54. PubMed ID: 23313232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentration-dependent polyparameter linear free energy relationships to predict organic compound sorption on carbon nanotubes.
    Zhao Q; Yang K; Li W; Xing B
    Sci Rep; 2014 Jan; 4():3888. PubMed ID: 24463462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobic End-Modulated Amino-Acid-Based Neutral Hydrogelators: Structure-Specific Inclusion of Carbon Nanomaterials.
    Choudhury P; Mandal D; Brahmachari S; Das PK
    Chemistry; 2016 Apr; 22(15):5160-72. PubMed ID: 26916229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-based nanomaterials mediated adsorption and photodegradation of typical organic contaminants in aqueous fulvic acid solution.
    Yin Z; Liu S; Tian Z; Zhao X; He J; Wang C
    Water Sci Technol; 2023 Oct; 88(7):1863-1874. PubMed ID: 37831001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Externally predictive quantum-mechanical models for the adsorption of aromatic organic compounds by graphene-oxide nanomaterials.
    Lata S; Vikas
    SAR QSAR Environ Res; 2019 Dec; 30(12):847-863. PubMed ID: 31577156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of hydrophobic effect to the sorption of phenanthrene, 9-phenanthrol and 9, 10-phenanthrenequinone on carbon nanotubes.
    Peng H; Zhang D; Pan B; Peng J
    Chemosphere; 2017 Feb; 168():739-747. PubMed ID: 27836280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and theoretical comparison of gas desorption energies on metallic and semiconducting single-walled carbon nanotubes.
    Mandeltort L; Chen DL; Saidi WA; Johnson JK; Cole MW; Yates JT
    J Am Chem Soc; 2013 May; 135(20):7768-76. PubMed ID: 23627526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.
    Brooks AJ; Lim HN; Kilduff JE
    Nanotechnology; 2012 Jul; 23(29):294008. PubMed ID: 22743805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple benzene derivatives adsorption on defective single-walled carbon nanotubes: a first-principles van der Waals density functional study.
    Ganji MD; Mohseni M; Bakhshandeh A
    J Mol Model; 2013 Mar; 19(3):1059-67. PubMed ID: 23114431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Nanomaterials and DNA: from Molecular Recognition to Applications.
    Sun H; Ren J; Qu X
    Acc Chem Res; 2016 Mar; 49(3):461-70. PubMed ID: 26907723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.