These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28892407)

  • 1. Nonparametric bootstrap technique for calibrating surgical SmartForceps: theory and application.
    Azimaee P; Jafari Jozani M; Maddahi Y; Zareinia K; Sutherland G
    Expert Rev Med Devices; 2017 Oct; 14(10):833-843. PubMed ID: 28892407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of Forces During a Neurosurgical Procedure: A Pilot Study.
    Gan LS; Zareinia K; Lama S; Maddahi Y; Yang FW; Sutherland GR
    World Neurosurg; 2015 Aug; 84(2):537-48. PubMed ID: 25862106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration of surgical tools using multilevel modeling with LINEX loss function: Theory and experiment.
    Azimaee P; Jafari Jozani M; Maddahi Y
    Stat Methods Med Res; 2021 Jun; 30(6):1523-1537. PubMed ID: 33847547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forces exerted during microneurosurgery: a cadaver study.
    Marcus HJ; Zareinia K; Gan LS; Yang FW; Lama S; Yang GZ; Sutherland GR
    Int J Med Robot; 2014 Jun; 10(2):251-6. PubMed ID: 24431265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying force and positional frequency bands in neurosurgical tasks.
    Maddahi Y; Ghasemloonia A; Zareinia K; Sepehri N; Sutherland GR
    J Robot Surg; 2016 Jun; 10(2):97-102. PubMed ID: 26914651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vision-based deformation recovery for intraoperative force estimation of tool-tissue interaction for neurosurgery.
    Giannarou S; Ye M; Gras G; Leibrandt K; Marcus HJ; Yang GZ
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):929-36. PubMed ID: 27008473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tool-Tissue Interaction Forces in Brain Arteriovenous Malformation Surgery.
    Sugiyama T; Gan LS; Zareinia K; Lama S; Sutherland GR
    World Neurosurg; 2017 Jun; 102():221-228. PubMed ID: 28336444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hand-tool-tissue interaction forces in neurosurgery for haptic rendering.
    Aggravi M; De Momi E; DiMeco F; Cardinale F; Casaceli G; Riva M; Ferrigno G; Prattichizzo D
    Med Biol Eng Comput; 2016 Aug; 54(8):1229-41. PubMed ID: 26718558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing neurosurgery with image-guided robotics.
    Pandya S; Motkoski JW; Serrano-Almeida C; Greer AD; Latour I; Sutherland GR
    J Neurosurg; 2009 Dec; 111(6):1141-9. PubMed ID: 19374495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gripping forceps "double action" for micro-neurosurgery.
    Wierzbicki V; Pesce A; Caruso R
    G Chir; 2017; 37(5):224. PubMed ID: 28098060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frugal Malleable Microdissectors and Arachnoid Knives for Microneurosurgery.
    Jha DK
    World Neurosurg; 2018 Apr; 112():148-152. PubMed ID: 29374611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force feedback in a piezoelectric linear actuator for neurosurgery.
    De Lorenzo D; De Momi E; Dyagilev I; Manganelli R; Formaglio A; Prattichizzo D; Shoham M; Ferrigno G
    Int J Med Robot; 2011 Sep; 7(3):268-75. PubMed ID: 21538769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early experiences with a novel (robot hand) technique in the course of microneurosurgery.
    Csókay A; Valálik I; Jobbágy A
    Surg Neurol; 2009 Apr; 71(4):469-72. PubMed ID: 18617248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Operative neurosurgery: personal view and historical backgrounds. 6. Positioning, instruments].
    Yonekawa Y
    No Shinkei Geka; 2010 Apr; 38(4):381-96. PubMed ID: 20387581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atraumatic suction tip for microneurosurgery--clinical experience.
    Mariak Z; Lyson T
    Minim Invasive Neurosurg; 2007 Dec; 50(6):379-81. PubMed ID: 18210364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of 3-DOF force sensing micro-forceps for robot assisted vitreoretinal surgery.
    Gonenc B; Handa J; Gehlbach P; Taylor RH; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5686-9. PubMed ID: 24111028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Picket Fence" clipping technique for large and complex aneurysms.
    Davies JM; Lawton MT
    Neurosurg Focus; 2015 Jul; 39 Video Suppl 1():V17. PubMed ID: 26132615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two surgeons four-hand microneurosurgery with universal holder system: technical note.
    Zomorodi A; Fukushima T
    Neurosurg Rev; 2017 Jul; 40(3):523-526. PubMed ID: 28247122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lawton's seven aneurysms: tenets and techniques for clipping.
    Meling TR
    Neurosurgery; 2011 Jun; 68(6):E1774. PubMed ID: 21389888
    [No Abstract]   [Full Text] [Related]  

  • 20. Thermal comparison of novel bipolar forceps in bovine liver.
    Elliott-Lewis EW; Benzel EC
    Neurosurgery; 2010 Jul; 67(1):160-4; discussion 164-5. PubMed ID: 20568669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.